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On the Sub-Optimality of Single-Letter
Coding Over Networks

Farhad Shirani

Abstract—1In this paper, we establish a new bound tying
together the effective length and the maximum correlation
between the outputs of an arbitrary pair of Boolean functions
which operate on two sequences of correlated random variables.
We derive a new upper bound on the correlation between
the outputs of these functions. The upper bound may find
applications in problems in many areas which deal with common
information. We build upon Witsenhausen’s result [1] on max-
imum correlation. The present upper bound takes into account
the effective length of the Boolean functions in characterizing
the correlation. We use the new bound to characterize the
communication-cooperation tradeoff in multi-terminal commu-
nications. We investigate binary block-codes (BBC). A BBC is
defined as a vector of Boolean functions. We consider an ensemble
of BBCs which is randomly generated using single-letter distri-
butions. We characterize the vector of dependency spectrums of
these BBCs. We use this vector to bound the correlation between
the outputs of two distributed BBCs. Finally, the upper bound
is used to show that the large blocklength single-letter coding
schemes studied in the literature are sub-optimal in various
multi-terminal communication settings.

Index Terms— Random coding, source coding, channel coding,
maximum correlation.

I. INTRODUCTION

OST of the coding strategies developed in information

theory are based on random code ensembles which
are constructed using independent identically distributed (IID)
random variables [2]. The codes associated with different
nodes in the network are mutually independent. Moreover,
the blocklength associated with these codes are asymptotically
large. One can use the law of large numbers to characterize
their performance in terms of information quantities that are
the functionals of the underlying distribution used to construct
the codes. They are called single-letter characterizations [3].
Although the original problem is to optimize performance of
codes with asymptotically large blocklengths, the solution is
characterized by a functional (such as mutual information)
of just one realization of the source or the channel under
consideration. At a high level, this is very similar to the
characterizations of the probability of large deviations studied
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in probability theory [4], the simplest example being the Cher-
noff Bound. In network source coding problems, one can do
better covering in larger dimensions so that source redundancy
can be exploited more efficiently, and the sources can be
represented and reconstructed with less distortion. In network
channel coding problems, better packing can be done in larger
dimensions so that the channel noise can be tackled in a better
fashion. In summary, the efficiency of fundamental tasks of
communication such as covering and packing increases as we
increase the dimension more or less all the way to infinity.
Recall that in point-to-point communication the key objective
is to perform these tasks efficiently. Although the individual
codewords are constructed using IID random variables, since
the encoding and decoding processes are accomplished in large
dimensions using the so-called typical sets, there is memory
of arbitrary lengths among the source reconstruction vectors
in source coding and channel input vectors in channel coding.

In network communication, one needs to (a) remove redun-
dancy among correlated information sources [5] in a distrib-
uted manner in the source coding problems, and (b) induce
redundancy among distributed terminals to facilitate [6] coop-
eration among them. For example, in the network source
coding problems such as distributed data compression, the
objective is to exploit the statistical correlation of the dis-
tributed information sources. Similarly, in the network chan-
nel coding problems, such as the interference networks and
broadcast networks, correlation of information among different
terminals are induced for better cooperation among them [7].
At a high level, efficient information coding strategies in
networks exploit statistical correlation among distributed infor-
mation sources or induce statistical correlation among infor-
mation accessed by terminals in the network. Of course,
the basic tasks such as packing and covering at every terminal
need to be accomplished as well. Statistical correlation among
information shared by the terminals in the network can be
viewed as a resource that needs to be efficiently managed.
Distributed statistical correlation can facilitate cooperation
among the terminals in networks.

It was first observed by Gacs, Korner and
Witsenhausen [1], [8] that coding over blocks decreases
distributed correlation. Consider a pair of distributed sources
X and Y with a joint probability distribution Pyy. Let
us assume that the joint distribution does not have any
zeros. There are two distributed agents who observe the
sources as shown in Figure 1. The observations include n
memoryless copies of the sources. The objective is to encode
the observations into one bit. Let e and f denote the encoding
functions associated with the two encoders. Loosely speaking,
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Fig. 1. Correlated Boolean decision functions.

we wish to maximize correlation between the outputs such
that H(e(X™)) > 0 and H(f(Y")) > 0, where H(-) is the
entropy function. It was shown that maximum correlation is
achieved when the output depends only on one of the input
samples at both encoders. In fact any block mapping strictly
reduces the correlation between the output bits. In summary,
uncoded mappings (mappings with blocklength 1) are optimal
in terms of correlation preservation. A second observation
that is made in these works is that if the sources have a
common component, then and only then the output bits can
be made perfectly correlated. In other words, if the objective
is to generate one bit at both encoders that match with
probability one, then this is possible if and only if the sources
have a matching component to begin with. This matching
component, if it exists, is called the common information
of the two sources.! This observation suggests that common
information is very fragile. Even a small perturbation of
the source distribution can produce a large change in the
correlation of the output bits [11]. The study of this setup has
had impact on a variety of disciplines, for instance, by taking
the agents to be two encoders in the distributed source
coding problem [12], or two transmitters in the interference
channel problem, or Alice and Bob in a secret key-generation
problem [13], [14], or two agents in a distributed control
problem [15], [16].

We have taken the fundamental observation made by Gacs-
Korner-Witsenhausen, and developed a framework for quan-
titatively characterizing the correlation preserving property of
any pair of encoding functions with arbitrary blocklengths. It is
harder to preserve distributed correlation in larger dimensions
than in smaller dimensions. In other words, short blocklength
codes are able to preserve and induce correlation in a dis-
tributed fashion in a better way than larger blocklength codes.
At this point, it is worth noting that this strange behavior leads
to a tension: to perform covering and packing we need large
blocklength codes, whereas to preserve and induce correla-
tion we need short blocklength codes. The overall network
performance may be optimized by codes whose blocklength
is some sweet finite value. Toward a characterization of this
trade-off, consider a source encoder at a terminal in a network
that maps n samples of an information source into k bits
(for some n and k). Then the blocklength of the encoder
is n. Suppose that each of the output bits depends only
on (an) samples of the input vector for some o < 1.
We can then define the effective length of the encoder as

IThis is also characterized via Rényi maximum correlation [9], [10]. If the
sources have a common information then the maximum correlation of the
sources is 1.
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(an). It is the conventional wisdom that performance of many
coding strategies (characterized by a sequence of encoders and
decoders with increasing blocklength) in network communica-
tion is super-additive in blocklength (e.g. see [17]). Our results
state that the performance is not super-additive in effective
length. In fact in network communication problems, to achieve
optimality, certain components of the transmission system
must have a finite effective length structure. In summary we
have new a trade-off between covering and packing efficiency,
and the correlation preserving/inducing ability of codes. That
is, a trade-off between communication and cooperation in
networks. Optimal codes have to straddle this trade-off.
In this work we make the following three contributions.

o We start with Section III. Consider a discrete memoryless

source X1, X», ..., with finite alphabet X', and a generic
distribution Px. Consider a block encoder (a Boolean func-
tion) e : X" — {0, 1}, where n denotes the blocklength
(see [8]). Given a pair consisting of a source and an
encoder, we define its dependency spectrum (Definition 6)
as a (unnormalized) 2"-dimensional vector that captures the
probabilistic as well as the functional memory structure of
the pair. For example, for n = 3, the dependency spectrum
is the following vector [Pooo, Poo1, - - ., P111] charactering
the contribution of the constant (Ppgg), single-letter (Poo1,
Po1o, P1oo), two-letter (Po11, Piio, Pio1), and three-letter
(P111) component functions toward constructing e. Note that
there are three one-letter and two-letter functions. As another
example, for n = 2, and logical AND function e(X") =
X1 A X3, with binary uniform source, we get Py; = Pig =
Py = %, and Pyo = 0. Logical AND function is two-thirds
a single-letter function and one-third a two-letter function.
This is a generalization of the effective length from a number
to a vector.
We use dependency spectrum to study distributed encoding
of correlated sources in the following way and provide
the first main result (Theorem 1 and 2) of the paper in
Section IV. Consider a pair of discrete memoryless cor-
related sources (X1, Y1), (X2, ¥2), ... with finite alphabets
X x )Y and a generic distribution Pxy. Consider a pair
of distributed block encoders ¢ : X" — {0,1} and
f YY" — {0,1}. We provide a characterization of the
correlation between the outputs of these block encoders.
In particular, we give a lower bound on the probability of
disagreement between the outputs P(e(X") # f(Y™)) in
terms of the dependency spectra of (Px,e) and (Py, f),
and the correlation of the sources given by P(X # Y).
Roughly speaking, this is a quantitative characterization of
the trade-off between the effective length of the encoders
and the output correlation.

o We use this characterization to analyze a large class of
sequence of code ensembles studied in the information
theory literature in Section V. We call this class Single-letter
coding ensembles (SLCE) (Definition 8). For example,
this class subsumes Shannon-style IID unstructured code
ensembles as well as structured linear code ensembles. Most,
if not all, of the coding theorems of information theory
that characterize asymptotic performance limits are based on
this class. In short, a code ensemble is an infinite sequence
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of collections of block encoders (indexed by blocklength
n = 1,2,...) along with a probability distribution on the
collection. We provide the following second main result of
the paper (Theorem 3 and 4). For a discrete memoryless
source X1, X2,..., with finite alphabet X and a generic
distribution Py, the output of the SLCE has the following
structure: for any fixed 1 < m < oo, the probability that
the contribution of m-letter functions toward constructing
e is large approaches zero as n tends to infinity. In other
words, with high probability SLCE produces encoders which
has either a single-letter component or an infinite-letter
component. We call this the 1-oo law. This is a structural
deficiency of SLCE. Moreover, when applied on a pair of
correlated sources, (X,Y), we provide a high probability
upper bound on the correlation of the outputs.

o We study two multi-terminal communication problems in
Section VI: transmission of correlated sources over the inter-
ference channels and the multiple-access channels. These
two problems have been studied in the literature extensively.
Inner bounds to the asymptotic performance limits (achiev-
able performance) based on SLCE have been developed
in the literature. These bounds have been the de facto
performance limits since the 1980s. We provide a novel
coding technique based on finite-length codes along with
two examples. Using the structural results from the previous
section, we show analytically that this coding technique
outperforms the inner bounds derived using arbitrarily long
codes constructed using SLCE. This is the third main result
of the paper (Proposition 5, 7 and 8). In other words,
specifically designed finite-length codes can perform better
than SLCE.

We discuss some related prior works. In the literature, it has
been shown that the loss in correlation caused by the applica-
tion of large effective-length codes causes a discontinuity in
the performance of schemes using such codes in some multi-
terminal problems. This was first observed in the Berger-Tung
achievable rate-distortion region for the problem of distributed
source coding [18] [11]. It was noted that when the common
information is available to the two encoders in the distributed
source coding problem, the performance is discontinuously
better than when the common information is replaced with
highly correlated components. In [12], we argued that the
discontinuity in performance is due to the fact that the encod-
ing functions in the Berger-Tung scheme preserve common
information, but are unable to preserve correlation between
highly correlated components. We proposed a new coding
scheme, and derived an improved achievable rate-distortion
region for the two user distributed source coding problem [19].
The new strategy uses a concatenated coding scheme which
consists of one layer of codes with finite effective-length, and
one layer of codes with asymptotically large effective-lengths.

II. NOTATION
In this section, we introduce the notation used in this
paper. We represent random variables by capital letters such
as X, U. Sets are denoted by calligraphic letters such as X, U.
Particularly, the set of natural numbers and real numbers are
shown by N, and R, respectively. For a random variable X,
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the corresponding probability space is (X, Fx, Px), where
F is the underlying o-field. The set of all subsets of X" is
written as 2. There are three different notations used for
different classes of vectors. For random variables, the n-length
vector (X1, X2,--+, X,), X; € X is denoted by X" € X".
For the vector of functions (ej(X),e2(X), -, en(X)) we
use the notation ¢(X). The binary string (i1, iz, ,in),i; €
{0, 1} is written as i. As an example, the set of functions
{e;(X™)i € {0, 1}""} is the set of n-length vectors of functions
(e1,i> e2,i, - - - » en,i) operating on the vector (X1, X2, -+, X,)
each indexed by an n-length binary string (i1, i2, -+ ,i,). The
vector of binary strings (if, i, --- ,1,) denotes the standard
basis for the n-dimensional space (e.g. i = (0,0, ---,0, 1)).
The vector of random variables (X, X,,---,Xj,).ji €
[1,n], ji # jk, is denoted by Xj, where i;, = 1,VI € [1,k].
For example, take n = 3, the vector (X1, X3) is denoted by
X101, and the vector (Xi, X2) by Xijo. Particularly, X;;, =
Xj,j e€[l,n]. Also, for t = 1, the all-ones vector, Xt = X".
For two binary strings i, j, we write i < j if and only if
ix < jk, Yk € [1,n]. Also, we write i < jifi < jandi # j. For
a binary string i we define Nj 2wy (i), where wpy denotes the
Hamming weight. Lastly, the vector ~ i is the element-wise
complement of i. We use @ to denote addition modulo %,
where k € N.

III. THE Effective-Length OF AN ENCODER

In this section, we define a set of parameters which measure
the effective-length of an encoding function. We consider
general Boolean functions, and find a decomposition of these
functions into components which operate over specific subsets
of the input sequence. The proposed decomposition builds
upon the analysis in [1]. The first subsection summarizes the
well-known results. The second subsection contains some new
results (Proposition 1 and 3).

A. Mathematical Preliminaries

It turns out that when the input sequence is a vector of
independent binary symmetric variables, the decomposition
that we provide is equivalent to the Fourier transform of
Boolean functions [20]. The Fourier transform does not take
into account the underlying probability distribution of the
sources. The connections between Fourier transforms and
the correlation between outputs of pairs of functions was
previously studied in [21], where the decidability of the
non-interactive simulation problem was considered. We pro-
pose the decomposition for general finite input alphabets with
arbitrary input distributions. We only consider encoders with
binary outputs.” The encoder can be viewed as a vector of
Boolean functions. Based on the decomposition, we define a
generalization of the effective-length called the ‘dependency
spectrum’ of a Boolean function.

We proceed by formally defining the problem. We assume
that two correlated DMS’s are being fed to two arbitrary
encoders, and analyze the correlation between the outputs of

2The analysis provided in this paper can be generalized to arbitrary finite
output alphabets. The interested reader can refer to Section 7 in [1].



6118

these encoders. The following gives the formal definition for
DMS’s.

Definition 1. (X,Y) is called a pair of DMS’s if we have
PX’L,YV! ()Cn, yn) = Hie[l,n] PX,',Y,‘ ()Ci, yi),Vl’l (S N,Xn (S
X", y" e V", where Px,y, = Px,y,Vi € [1,n], for some
joint distribution Pyxy.

Akin to the results presented in [1] and [8], we restrict
our attention to the binary block encoders (BBE), which are
defined below.

Definition 2. A Binary-Block-Encoder is characterized by the
triple (e, X, n), where e is a mapping e : X" — {0, 1}", X is
a finite set, and n is an integer.

We refer to a BBE by its corresponding mapping e. The
mapping e can be viewed as a vector of functions (e;);c[1,x]
where ¢; : X" — {0, 1}. We convert the problem of analyzing
a BBE into one where the encoder is a binary real-valued
function. Converting the discrete-valued encoding function
into a real-valued one is crucial since it allows us to use the
rich set of tools available in functional analysis. We present
a summary of the functional analysis apparatus used in this
work.

Definition 3. Fix a discrete memoryless source X, and a BBE
e: X" — {0, 1}". Let P (¢;(X") = 1) = q;. For each Boolean
function e;,i € [1,n], the real-valued function corresponding
to e; is defined as follows:

1—g; if e;(X") =1
El(Xn):[ QU lfel( ) s (1)
—qi. otherwise.
Remark 1. Note that e;,i
variance q;(1 — g;).

€ [1,n] has zero mean and

The random variable ¢;(X") has finite variance on the
probability space (X", 2%" Pxn). The set of all such functions
is denoted by Hyx ,. More precisely, we define Hyx , =
Lo (X", 2" Pyn) as the separable Hilbert space of all func-
tions 4 : X" — R with inner product given by i - § =
> h(x™)(x™) Pxn (x"). Since X is a DMS, the isomorphism
relation

Hxn=Hx1 Q@ Hx1--Hx, (2)

holds [22], where ® indicates the tensor product.

Example 1. Let n = 1. Let X = {0, 1}. The Hilbert space
Hx,1 is the space of all functions h : X — R. The space is
spanned by the two linearly independent functions /1 (X) =
1ix=1; and ﬁz(X) = I{x=0}. We conclude that the space is
two-dimensional.

As a reminder, the following defines the tensor product of
vector spaces.

Definition 4 ([22]). Let H;,i € [1, n] be vector spaces over
a field F. Also, let B = {v;jlj € [1,d;]} be the basis
for H; where d; is the dimension of H;. Then, the tensor
product space Qjc[1,21Hi is defined as the set of elements v =

Zjle[l,dl] ije[l,dz] T Zj,,e[l,d”] Cilujo, s jnVj1 @V - - @V
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Remark 2. The tensor product operation in Hx , is real

multiplication (i.e. f1,fo € Hxi1 @ fi(X1) @ f2(X2) £

(X)) f2(X2)). So, if {fi(X)li € [1,d]} is a basis for Hx,1

when |X| = d, a basis for Hx , would be the set of all the

real multiplications of these basis elements: {11 je[1,n1fi; (X ),
e [1,d]}.

Example 1 gives a decomposition of the space Hy, for
binary input alphabets. Next, we introduce a decomposition of
‘Hx,1 for general alphabets which turns out to be very useful.
Particularly, we argue that every Boolean function e(X) €
‘Hx,1 can be written as a summation of two functions, one
function whose expected value is 0, and a constant function.
More precisely, let Zx ; be the subset of all functions of X
which have 0 mean, and let yx | be the set of constant real
functions of X. Zx,; and yx, are linear subspaces of Hxi.
Ty, is the null space of the functional which takes an arbitrary
function f € H x,1 to its expected value Ex ( £). The null space
of any non-zero linear functional is a hyper-space in Hy i.
So, Tx,1 is a (|X'| — 1)-dimensional subspace of Hx . On the
other hand, yx,1 is a one dimensional subspace which is not
contained in Zx ;. It is spanned by the function g(X) = 1.
Consider an arbltrary element f € Hx,1. One can write f =
fi+ f» where fi = f —Ex(f) € Zx,1, and fo = Ex(f) €
yx,1. Hence, Hx,1 = Zx1 ® yx,1 gives a decomposition of
Hx,1. Replacing Hy 1 with Zx,1 @ yx,1 in (2), we have:

Hxn =" Hx1=&"_,Zx,1Dyx,1)
(
@ Bicio,11"(Gi, ®Gi, ®---Q®G;,), (3)

where

and, in (a), we have used the distributive property of tensor
products over direct sums. Using equation (3) we can define
the following:

Definition 5. For any e € Hx ,,n € N, define the decomposi-
tion é = ) ; ¢, where & € G;, ®Gi, ®---®G;,. Then, é; is the
component of € which is only a function of {Xj;|ij = 1}. The
collection {ej| zje[l nlj = k}, is called the set of k-letter
components of e. The vector (é)ic(o,1)» is called the real
decomposition vector corresponding to e.

In order clarify the notation, we provide the following two
examples.

Example 2. Let (X, X») be two independent symmetric
binary random variables. Assume e(X1, X2) = X1 ® X» is
the binary addition function. In this example P(e = 1) = %
The corresponding real function is given as follows:

X1+ X2 €{0,2},
Xi+Xo=1,

i
e(X1,X2) = [ 2

1
2
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Using Lagrange interpolation [23], we can write ¢ as follows:
é= —%(Xl + X2 = 2)(X1 + X2)—
%(Xl +Xo - DX+ X2 —-2) - %(X1+X2)(X1+X2 -1
= —X? — X3 —2X1 X2 +2X +2X, — %
The decomposition of e in the form given in (3) is

- 1 1
e, =X1+ X, —2X1Xo — 3 = —5(1 —2X)(1 —2X>),

Glo=—X1+X1=X1(1-X)) @0,
é.1 = —X5+ X2 = Xa(1 — X2) (20,

0,0 = 0.

where (a) holds since the input is chosen from {0, 1}. Note that
e has a single non-zero component in its decomposition. This
component is the two-letter function e11 € Zx1 ® Zx,1. This
is to be expected since the binary addition of two symmetric
variables is independent of each variable. So there are no
single-letter components. In fact one can verify this directly
as follows:

Ex,1x,(€1X1) = X1—X1 =0, Ex,x,(€|X2) =X>2—X,=0.

Remark 3. In the previous example, we found that the binary
summation of two independent binary symmetric variables is
a two-letter function (i.e. it only has a two-letter component).
However, this is not true when the source is not symmetric.
When P(X = 1) # P(X = 0), the output of the summation
is not independent of each of the inputs. One can show that
the single-letter components of the summation are non-zero in
this case.

Example 3. Let ¢(X, X2) = X1 A X3 be the binary logical
AND function. The corresponding real function is:

I (XL X2) # (1,1,

e(Xl,X2)=[§ (X1, X2) = (1, 1).

Lagrange interpolation gives e = X1 X2 — %. The decomposi-
tion is given by:

1 1 1 1
Gl =(X| —=)(Xs — = Glo=~(X| — =
e = (X1 2)( 2 2), €1,0 2( 1 2),

1 1
Go1=~(Xa— =), é0=0.
€0,1 2( 2 2) €0,0

The variances of these functions are given below:

- 3 - . . 1
Var(e) = T3 Var(eo,1) = Var(ero) = Var(er,1) = 6

As we shall see in the next sections, these variances play a
major role in determining the correlation preserving properties
of e. In the perspective of the effective-length, the function e
has % of its variance distributed between €, 1, and e o which
are single-letter functions, and % of the variance is on e,

which is a two-letter function.

Similar to the previous examples, for arbitrary e €
Hxn,n € N, we can find a decomposition ¢ = > ; ¢j, where
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¢ € G, ®G, ® - ®G,. We can characterize ¢ in terms
of products of the basis elements of G;; ® G;, ® --- @ G;, as
follows.

Lemma 1. For an arbitrary input alphabet X, let hj(X),1 €
{1,2,---,|X| =1} be an orthogonal basis for Ly i, such that
E(h}(X)) = q(1 —q),Vl € {1,2,--- ,|X| — 1}, where q =
P(X #0). Let t = {t : iy = 1}, then:

Z Ci,()rer H ﬁlz (Xt),

vierd e[1,|X|-1] tet

G(X") = &)

where ci, (I)ie: € R, and (Iy);e; is the sequence of 1;’s for
rer.

Proof. Follows from Definition 4. O

Example 4. Let X = {0, 1}. Since g,-j ’s, j € [1, n] take values
from the set {Zx 1, yx,1}, they are all one-dimensional. Let h
be defined as follows:

it X =1,

5
if X =0, ©)

where ¢ £ P(X = 1). Then, the single element set {#(X)} is
a basis for Zx 1. Hence, using the previous lemma:

GxM =a [ hxo.

tip=1

(6)
where ¢j € R.

B. Properties of the Real Decomposition

The dependency spectrum and effective length of an arbi-
trary Boolean function are defined below.

Definition 6. For a function e : X" — {0, 1}, with real
decomposition vector (€)ic(o,1)», the dependency spectrum
is defined as the vector (Pi)ic(o,1)» of the variances, where
P; = Var(ey),i € {0, 1}". The effective length is defined as
the expected value L = % Zie{o,l}” wg (i) - Pj, where wy () is
the Hamming weight.

Remark 4. The dependency spectrum (Pi)icN characterizes
the ‘effect’ of each component ej on the output of the function
e. A relevant work can be found in [24] where the output cor-
relation of two functions with i.i.d inputs is characterized using
_l@n _l@n

the singular values vector of the matrix Py * Pfi v Py ?

In the next proposition, we show that the ¢;’s are uncorre-
lated and we derive an expression for P;j using the notation in
Lemma 1.

Proposition 1. Let X" be a sequence of independent and iden-
tically distributed (i.i.d.) random variables and let (€;)icio,1y
be the real decomposition vector corresponding to the Boolean
function e(X"). Define Pi as the variance of ej(Xj). The
following hold:

1) E(eiej) = 0,1 # j, in other words & s are uncorrelated.
2) P = E@) = ZVter:l,e[l,|X|71]Ciz,(l,),er (a1 =),
where wpy is the Hamming weight function. Particularly,
if X =1{0,1}, then Py = E(@}) = ¢ (q(1 — q))*#D.
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Proof. 1) follows by direct calculation. 2) holds from the
independence of X;’s. O

In the next lemma we find a characterization of e¢j,i €
{0, 1}" for general e.

Proposition 2. Let X" be a sequence of i.id. random
variables and let (¢;)ic(0,1)» be the real decomposition vec-
tor corresponding to the Boolean function e(X"). ¢ =
Exn x; (€1 Xi) — Zj ~i€j gives the orthogonal decomposition
of ¢ into the Hilbert spaces G, ® Gi, -+ - ® G, ,1 € {0, 1},

Proof. We prove that the ¢; given in the lemma are indeed
the decomposition into the components of the direct sum.
Equivalently, we show that 1) ¢ = > ¢, and 2) & €
Gi, ® G, ® - ®G;,,Vie {0, 1}".

First we check the equality ¢ = > ;¢;. Let t denote the
n-length vector whose elements are all ones. We have:

- - - - - L) -
ey = Exnx, (€] X¢) — Zei @ et+zei —:Y= Z é,
i<t i<t i€{0,1}"
where in (a) we have used 1) X¢ = X " and 2) for any function
7 of X", Exnxn(f1X") = £, and (b) holds since i < t < i #
t. It remains to show that ¢; € G;, ®G;, ®---®G;,, Vi € {0, 1}".

The next lemma provides a means to verify this property.

Lemma 2. Fix i € {0,1}", define Ay = {s|li; = 0}, and
A1 £ (slig = 1). Then, f is an element of Gi, ®Gi, ®@---QGi,
if and only if (1) it is constant in all X;, s € Ag, and (2)
Exnx (f~|X~iS) =0 for all s, when s € Aj.

Proof. Please refer to the appendix. O

Returning to the original problem, it is enough to show that
ei’s satisfy the conditions in Lemma 2. We prove the stronger
result presented in the next lemma.

Lemma 3. Letr X" be a sequence of i.i.d. random variables
and let (é)icjo,1)» be the real decomposition vector corre-
sponding to the Boolean function e(X™). The following hold:
1) Vi, Exn (&;)=0.

2) Vi <k, we have Exnx, (¢i| Xk) = éi.

3) Exn(ejex) = 0, for i # k.

4)Vk <i: Exn‘xk(éﬂxk) =0.

Proof. Please refer to the appendix. O]

The second condition in Lemma 3 is equivalent to condition
(2) in Lemma 2. The fourth condition in Lemma 3 is equiv-
alent to condition (1) in Lemma 2. Using Lemma 2 and 3,
we conclude that ¢; € G, ® G;, @ --- ® G;,, Vi € {0, 1}"*. This
completes the proof of Proposition 2. O

The following example clarifies the notation used in Propo-
sition 2.

Example 5. Consider the case where n = 2. We have the
following decomposition of Hx »:

Hx 2= (Tx,190Zx,1)®Ix,1 @yx,1) D (yx,19Zx,1) D (yx,1®7x,1)-

(7

Let (X1, X2) be an arbitrary function in Hx »>. The decom-
position of ¢ in the form given in (7) is as follows:

e=¢1,1+e1,0+eo1+ e,
e, =¢e¢—Eyx,x,(]X1) — Ex,x,(e|X2)
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+Ex, x,(6) e Ix1 ®Ix.1,
e1,0 = Ex,x, (€]1X1) — Ex,,x,(€) € Ix,1 X 7x,1,
eo,1 = Ex,|x,(€]1X2) — Ex, x,(€) € yx,1 ® Ix.1,
0,0 =Ex, . x,(€) € yx,1 ® yx.1.

It is straightforward to show that each of the ¢; ;’s, i, j €
{0, 1}, belong to their corresponding subspaces. For instance,
€o,1 is constant in X1, and is a O mean function of X, (i.e.
Ex, (€0,1(x1, X2)) = 0,x1 € X), s0 €0,1 € yx,1 ® Ix,1.

Lastly, we derive an expression for P; using Proposition 2:

Proposition 3. For arbitrary e : X" — {0, 1}, let e be the
corresponding real-valued function, and let é = ) ; & be the
decomposition in the form of Equation (3). The variance of
each component in the decomposition is given by the following
recursive formula Pi = Ex; (IEQ,,‘Xi (e| Xy)) — Zj<i P;, Vi €
{0, 1}, where Py £0.

Proof. Please refer to the appendix. O

Corollary 1. For an arbitrary e X" — {0,1} with
corresponding real function é, and decomposition é = ; é.
Let the variance of € be denoted by P. Then, P =3 ; P;.

The corollary is a special case of Proposition 3, where we
have taken i to be the all ones vector.

IV. CORRELATION PRESERVATION IN
ARBITRARY ENCODERS

Our objective is to bound the correlation preserving prop-
erties of general n-length encoding functions. As a first step,
we derive bounds on the correlation between the outputs of two
arbitrary Boolean functions (i.e. functions whose output is a
binary scalar). For pedagogical reasons we present the results
of this section in two parts. First, we consider binary input
alphabets, and derive bounds on the probability of agreement
of Boolean functions. Then, we extend these results to the case
of non-binary input alphabets.

A. Binary Input Alphabets

We proceed with presenting the main result of this section.
Let (X, Y) be a pair of binary DMS’s. Consider two arbitrary
Boolean functions ¢ : {0, 1}" — {0,1} and f : {0, 1}" —
{0, 1}. The following theorem provides an upper-bound on
the probability of equality between the functions e(X") and

Fam.
Theorem 1. Let € & P(X # Y), the following bound holds:

2 S [T i—23 cpiQ) < Plexh) £ F(rm)
<123k [ a2 arlol,

where N; £ wg (1), Py is the variance of ej, and ¢ is th~e real
function corresponding to e, and Q; is the variance of f;, and
finally, C; & (1 — 2¢€)M.

Proof. Please refer to the appendix. O
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Remark 5. The value Ci = (1 — 2¢)M is decreasing with
Nji. So, in order to increase P(e(X") # f(Y™)), most of the
variance Pj should be distributed on e; which have lower Nj
(i.e. operate on smaller blocks). Particularly, the lower bound
is minimized by setting

P; QO U i=ig,
VVar(X) Var@@) |0 otherwise.

®)

This recovers the result in [1]. More precisely, if we replace
the dependency spectrum in Theorem 1 by the values in
Equation (8), we get:

2(1 = Gy)yVar(X)Var(Y) < P(e(X") # f(Y")).

This is the bound given in Theorem 2 in [I], where
cos(0) = Gj,.>

Remark 6. For fixed Pi, the lower-bound is minimized by
taking e, and f to be the same functions.

Corollary 2. We can relax the bound in Theorem I as follows:

23 (1-COPIQ} < Pe(X") £ £(r") <123 (1-CHP} Q}

Proof.
c=2 > P > Qi- 2ZCiPi%Qi%
i i i
@, 523 P20 23 P} Q}
i i
S0 =2 (- PG
In (a) we have used th; Cauchy-Schwarz inequality. O]

B. Arbitrary Input Alphabets

So far, we have only considered Boolean functions with
binary input alphabets. Next, we extend Theorem 1; and
derive a new bound on the correlation between the outputs
of Boolean functions with arbitrary (finite) input alphabets.
Similar to the previous part, let (X, Y) be a pair of DMS’s
with joint distribution Py y. Assume that the alphabets X’ and
Y are finite sets. Consider two arbitrary Boolean functions
e: X" — {0,1}and f : Y" — {0, 1}. We prove the following
extension of Theorem 1.

Theorem 2. Let y £ sup(E(h(X)g(Y)), where the supremum
is taken over all single-letter functions h : X — R, and g :
Y — R such that h(X) and g(Y) have unit variance and zero
mean. the following bound holds:

2SS i-23 piQ} = Plex™) £ ()
<12 3k [ a2 arlel,

3For a definition of & please refer to [1].
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where 1) C; & y/Ni, 2) P is the variance of e;, 3) € is thNe real
function corresponding to e, 4) Qj is the variance of fi, and
5) Ni £ wg ().

Proof. Pleas refer to the Appendix. O

Remark 7. In Lemma 9 which was used in the proof of
Theorem 1 in the Appendix, it was shown that for binary
random variables X and Y, with P(X # Y) = €, we have
w = 1 —2€. So, the bounds in Theorem 1 and Theorem 2 are
the same for binary inputs.

Remark 8. The value of vy is in the interval [0, 1]. v is equal
to one if and only if X =Y. The proof is straightforward and
follows from the Cauchy-Schwarz inequality.

C. Discontinuity of the Output Correlation at Asymptoticly
Large Effective Lengths

In [11], it was shown that an extension of the Berger-Tung
achievable region with common components for the distributed
source coding problem is discontinuous in the source distribu-
tion. We argue that this is a widespread phenomenon in current
coding strategies in multi-terminal communications and that it
is an artifact of the discontinuity in the correlation between
the outputs of functions with asymptotically large effective
lengths.

Lemma 4. Let (X",Y") be a sequence pairs of i.i.d. binary
random variables and let (¢)i and ( fin)ie{(), 1yn be the real
decomposition vector corresponding to the Boolean function
e"(X™) and f"(Y"), respectively, where (" (X"), f"(Y"™))neN
is a sequence of pairs of Boolean functions such that:

P _[ri=1 o
VVar(X) /Var(Y) |0 otherwise.
Then, if e = P(X #Y) #0,
2/P1 Qi <liminf P (X") £ f'(¥™). (10)

whereas for € = 0 and €"(-) = f"(-), we have P(e"(X") #
1) =0.

The proof of Equation (10) follows directly from Theo-
rem 1. For ¢ = 0, note that P(X = Y) = 1, so, given that
the two Boolean function are the same, their outputs are equal
with probability one.

Lemma 4 shows that functions with asymptotically large
effective lengths produce outputs whose correlation is dis-
continuous as a function of the input distribution. In the
next section, we show that single letter coding strategies
produce functions with asymptotically large effective lengths.
We use the discontinuity in correlation proved in Lemma 4 to
show that these coding strategies are sub-optimal in various
communication scenarios.

V. CORRELATION IN SINGLE LETTER CODING ENSEMBLES

In this section, we investigate the coding ensembles used in
multi-terminal communication schemes. Deriving computable
characterizations of the optimal achievable performance limits
of communication networks has been a topic of significant
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interest in multi-terminal information theory. One of the
main instruments used in the information theoretic analysis
of communication schemes is the concentration of measure
properties which manifests when considering SLCE. These
coding ensembles are used in schemes such as Shannon’s
point-to-point (PtP) source coding scheme, the Berger-Tung
coding scheme for distributed source coding [25], the Zhang-
Berger multiple-descriptions coding scheme [26], the Cover-El
Gamal-Salehi coding scheme [6] for transmission of correlated
sources over the multiple-access channel, and the Salehi-
Kurtas scheme [27] for the transmission of sources over the
interference channel. As a first step, it is shown that SLCEs
produce encoding functions which have most of their variance
either on the single-letter components or on the components
with asymptotically large blocklengths. This along with The-
orem 2 are used to prove that such schemes are inefficient
in preserving correlation. In the next step, we provide several
examples of multi-terminal scenarios where in order to achieve
the optimal performance, the correlation between the outputs
of the encoding functions used in different terminals must
satisfy specific lower bounds which cannot be satisfied using
SLCE:s.

A. Single Letter Coding Ensembles

Traditionally, the probabilistic method has been used
to investigate the performance of coding schemes in
multi-terminal communications. The coding scheme is
designed by providing a stochastic rule which chooses the
encoding function from the set of all possible encoding func-
tions. A ‘good’ coding scheme is one which produces ‘good’
encoding functions with high probability. A coding ensemble
consists of a probability distribution on the set of all encoding
functions:

Definition 7. For a fixed t € N, let (r))ien.k € [1,1]
be sequences of natural numbers which go to infinity as
i — o0. Define sets of encoding functions Eli = {g;;

Xt {O,l}ri},k e [1,t],i € N. A coding ensemble
8 is characterized by a sequence of probability measures
Pg,i(g’i,gé, e ,gﬁ),i € N on the set of encoding functions
&l x & x ---&. The variable i is called the blocklength.

Remark 9. Whenever the choice of the coding ensemble and
the blocklength is clear, we denote the distribution Pgs; by
Pg B E (€, €, ", €).

In a multi-terminal scenario with 7 encoders, for a given
blocklength n, the coding ensemble chooses ¢ encoding
functions Ej,k € [I,¢] randomly and based on the joint
distribution Pg ... E (e], €5, - ,¢,). Let X} be the input
of the kth encoder. The output of the encoder is the binary
sequence EJ (X}). The length of the output sequence is 7.
As an example, in Shannon’s point-to-point coding ensemble,
the probability distribution Pg, (e;) on the set of encod-
ing functions is determined by using single-letter distrib-
utions to assign probabilities to the corresponding code-
books. Shannon’s method of assigning probabilities to encod-
ing functions leads to specific properties which are shared
among the coding ensembles used in many multi-terminal
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communication scenarios. These properties are described
below. For simplicity of notation, in presenting these condi-
tions we write Pg(e) instead of Pg, (¢;) when the notation
does not cause ambiguity:

Definition 8. The coding ensemble characterized by Pg;,i €
N is called an SLCE if the following properties hold for every

k e [1,t]. Fix k € [1,¢], let E = E; = (Ey, Ea, -+, Ey),
then®
1) Asymptotically Independent Codewords: 3ox >

0 such that Vx",3B,(x") C X" such that the following
holds:
Pr(X" € B,(x")) < 27",
vi'" ¢ B,(x"),e",é" €{0,1} :
(1 = 27"%) Py (") Pp(em (€7) < Pp(emy, g (€, &)
< (14 27"9%) Pg(eny () Pg ey (80).

2) Asymptotically Independent Output Bits: Vo > 0,3m €
N such that Vn > m,Vx" € {0, 1}", 0 € {0, 1}, Vi € [1,n]:
|P(E;(X") = o] X" = x") — P(Ei(X") = | X; = x,)| < 6.
3) Typicality Encoding: Yz € S, : PE(E) = Pp(E,), where
E_(X") = Y (E(r(X"))), where S, is the symmetric group
of length n.

and

The properties of SLCE codebooks can be explained as
follows:
1) Asymptotically Independent Codewords: Take an arbi-
trary vector x". The condition requires that the codewords
E(x™) and E(x)",x" € {0, 1} be independently generated
except for the set of vectors x" € B, (x"), where the probabil-
ity of the set B, (x") goes to 0 exponentially fast as n — oo.

An interpretation for this property is that codewords are
chosen pairwise independently as the blocklength goes to
infinity. For instance, let us investigate the property in the
conventional Shannon code ensembles, where codewords are
chosen pairwise independently. In order for E(x") and E(x)"
to be correlated, they must be mapped to the same codeword.
This requires that X" € B,(x"), where B, (x") is the set of all
vectors x" which are jointly typical with x" with respect to
the distribution PX,}?’ where PY,X,)? = Py Pxy P}?\Y'
2) Asymptotically Independent Output Bits: The property
requires that the joint distribution of the input sequence and
the output sequence of the encoding function averaged over all
possible encoding functions approaches a product distribution
in variational distance as n — oo (i.e. the output bits ‘look’
independent.). It is well known that the property holds for
conventional Shannon coding ensembles (e.g. [28]).
3) Typicality Encoding: The explanation for the third condi-
tion is that the probability that a vector x” is mapped to y”
depends only on their joint type and is equal to the probability
that the permuted sequence 7 (x™) is mapped to 7 (y"). As an
example typicality encoding satisfies this condition.

B. Examples of Single-Letter Coding Ensembles
In the following examples, we show that the coding
ensembles used in Shannon’s point-to-point source coding

4Recall that the ith component of the vector of encoding functions E is
denoted by E;.
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Encoder | Decoder
I
1
{X1, Xo, -+, X0} Un M ! un
— QX7") iun) r (M) f——
.
1
Fig. 2. Point-to-point source coding example
scheme [29] and the Cover-El Gamal-Salehi (CES) [6] scheme U X,
. . — Enc 1
for the transmission of correlated sources over the multiple
access channel are SLCEs. y oV
1) Point-to-Point Source Coding: Consider the PtP source > Pyler.az Dec —*
coding problem depicted in Figure 2. A discrete memoryless
source X is fed to an encoder. The encoder uses the mapping v o Fnc 2 |2

E : X" — U" to compress the source sequence. The codebook
is defined as the image of E. The codebook is indexed by
the bijection i : Im(E) — [1,|Im(E)|]. The index M £
i(E(X™)) is sent to the decoder. The decoder reconstructs the
compressed sequence U”" £ i ~! (M) = E(X"). The efficiency
of the reconstruction is evaluated based on the separable distor-
tion criteria d,, : X" xU" — [0, 00), where separability prop-
erty means that d,(x", u") = Zie[l,n] di(xi,u;). We assume
that the alphabets X and U/ are both binary. The rate of
transmission is defined as R £ %log |Im(E)|, and the average
distortion is defined as %E(dn (X", U™)). The goal is to choose
E such that the rate-distortion tradeoff is optimized. Note that
the choice of the bijection ‘i’ does not affect the performance
of the coding scheme. It is well-known that for a source X
and distortion criteria d; : {0, 1} x {0, 1} — [0, 00), the rate-
distortion pair (R, D) = (r, Ex v(d (X, U))) is achievable
for all » > I(U; X) and conditional distributions Py x. The
conventional proof [29] uses SLCE’s to construct the coding
scheme. In order to verify the properties of the SLCE’s in the
coding ensemble in [29], we provide an outline of the scheme.
Fix n € N, and € > 0. Define Py(u) = Ex{Pyx(u|X))}.
In [29], a randomly generated encoding function is constructed
with the aid of a set of vectors called the codebook, and
typicality encoding. The codebook C is constructed as follows.
Let AZ(U) 2 {u"||[2wy@") — Py(1)] < €} be the set
of n-length binary vectors which are e-typical with respect
to Py. The codebook C is constructed by choosing [2"R]
vectors from A?(U) randomly and uniformly. For an arbitrary
sequence x” € {0, 1}", define AZ(U|x") as the set of vectors
in C which are jointly e-typical with x" with respect to Py x.
The vector E(x") is chosen randomly and uniformly from
AN(Ulx")NC.

Remark 10. The codebook generation process could be
altered in the following way: instead of choosing the code-
words randomly and uniformly from the set of typical
sequences A?(U), the encoder can produce each codeword
independent of the others and with the distribution Pyn(u") =
cr1,m Py (ui). However, the discussion that follows remains
unchanged regardless of which of these codebook generation
methods are used.

Lemma 5. The ensemble described above is a SLCE.

Proof. Please refer to the Appendix. O

Fig. 3. Transmission of Sources over MAC

2) Transmission of Correlated Sources Over the Multiple
Access Channel (CS-MAC): Consider the problem of the
lossless transmission of the sources U and V over a MAC
depicted in Figure 3. The largest known transmissible region
for this problem is achieved using the CES scheme. The
following lemma gives the transmissible region using the
CES scheme in absence of common components (i.e. when
there is no random variable W such that (a) H(W) > 0,
by W= fU)=gV))

Lemma 6. [6] The sources U, and V are transmissible over a
a CS-MAC with channel input alphabets X1 and X5, and out-
put alphabet Y, and channel transition probability p(y|x1, x2),
if there exists a probability mass function p(xi|u)p(xa|v) such
that:

HU|V) <1(X1;Y[X2,V),
H(VIU) <1(X2;Y|X1,U),
HU,V) <I1(X1,X2Y),

where p(u,v,x1,x2) = p(u,v)p(xi|u) p(x2lv).

Similar to the previous example achievability is proved by
providing a coding ensemble which specifies a probability
distribution Pg(e;, €>) on the set of pairs of encoding functions
at the two transmitters. The CES scheme generates the encod-
ing functions independently (i.e. Pg(ei, e2) = Psg(e;)Ps(e2)).
Each of the encoding functions is generated by a method sim-
ilar to the previous example. Hence, the marginals Pg(e;),i €
{1, 2} each satisfy the conditions in Definition 8. So, the cod-
ing ensemble is a SLCE.

C. Bounds on Output Correlation for SLCEs: The [-co Law

Our objective is to analyze the correlation preserving
properties of SLCE’s. For a randomly generated encoding
function E = (Ey, E2,--- , E,), denote the decomposition
of the real function corresponding to the kth element into
the form in Equation (3) as Ex = >4 E"kji,k e [1,n]. Let
P, i be the variance of I;"k,i. For a fixed m € N, we are
interested in the quantity Zi:Nigm,iyéoo---m P ; which is the
total variance allocated to components of the decomposition
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which operate on at most m elements of the input except for
the single-letter component. From Theorem 1 we know that
if Zi:Ni <m,i£00--01 Py ;i is small, then the encoding function
preserves less correlation. The following proposition shows
that the probability Pg(3 ;. Ni<m,izi; Phi = 7) is independent

of the index k. This is due to property 3) in the Definition 8
of SLCE’s.

Proposition 4. Ps(>_; n; < i00.-01 Pki = 7) is constant as
a function of k.

Proof. Please refer to the Appendix. O]

The next theorem shows that most of the variance in the
components of the decomposition of Ej is concentrated in the
single-letter component Ek,ik and the large effective length
components of the decomposition. We refer to this as the
1-co law. The proof of the theorem is provided in the
Appendix.

Theorem 3. For any k € N,m € Ny > 0
PS(Zi:Nism,i;&ik Pii > y) — 0, as n — oo, where, iy is
the kth standard basis element.

Remark 11. Theorem 3 shows that SLCE’s distribute most of
the variance of Ey on Ek,i ’s which operate on large blocks.
Hence, the encoders generated using such ensembles have high
expected effective-lengths. This along with Theorem 1 gives
an upper bound on the correlation preserving properties of
SLCE’s. This is stated in the following theorem.

Theorem 4. Let (X,Y) be a pair of DMS’s, with P(X =
Y) = 1 — e. Also, assume that the pair of BBE’s E, F are
produced using SLCE’s. Define E = E1, and F £ Fy. Then,

Vo > 0: Pg (PXIL,Yn (E(Xn) ;é F(Yn)) > C) — 1,

1
as n — oo, where { = ZP%Q% —2(1 — ZE)Pileizl -0, P &
Var(E;), Qi 2 Var(F), P £ Var(E), and Q 2 Var(F).

The proof is provided in the Appendix.

Remark 12. Note that in this theorem we consider a pair
of BBEs produced using SLCEs. The bound is presented as
function of the dependency spectra of the two BBEs. The two
SLCEs can have arbitrary correlation. As an example, E and
F can be taken to be either independent or exactly equal to
each other.

Remark 13. The previous theorem gives a bound on the
correlation preserving properties on SLCE’s. The theorem
shows that in order to increase correlation in these schemes
the encoder needs to put more variance on the element
Ek,ik , k € [1,n]. This would require more correlation between
the input and output of the encoder, which itself would require
more rate. As an example consider the extreme case where
Var(Ek) = Var(Ek,ik), which requires Eix(X") = Xi.
This means that in order to achieve maximum correlation,
the encoder must use uncoded transmission.

Remark 14. In the case when X = Y, there is common-
information [8] available at the encoders. If the encoders
use the same encoding function E, their outputs would be
equal. Whereas from theorem 4, for any non-zero €, the output
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u— Enc. 2 TE?
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Xoo
Fig. 4. An CS-IC example where SLCEs are suboptiomal.

correlation is bounded away from 0 (except when doing
uncoded transmission). So, the correlation between the outputs
of SLCE’s is discontinuous as a function of €.

VI. MULTI-TERMINAL COMMUNICATION EXAMPLES

In this section, we provide two examples of multi-terminal
communication problems where SLCEs have suboptimal per-
formance. We use the discontinuity mentioned in the previous
section to show the sub-optimality of SLCEs.

A. Transmission of Correlated Sources Over the Interference
Channel

Consider the problem of transmission of correlated sources
over the interference channel (CS-IC) described in [27].
We examine the specific CS-IC setup shown in Figure 4.
We are restricting our attention to bandwidth expansion factor
equal to one. Here, the sources X and Y are Bernoulli random
variables with parameters ax and ay, and Z is a g-ary random
variable with distribution Pz. X and Z are independent. ¥ and
Z are also independent. Finally, X and Y are correlated, and
P(X # Y) = €. The random variable N; is Bernoulli with
parameter J. Decoder one reconstructs X and decoder two
reconstructs Z losslessly. The first transmitter transmits the
binary input X1, and the second transmitter transmits the pair
of inputs (X»1, X22), where Xp; is g-ary and X»; is binary.
Receiver 1 receives Y] = X| @ Ny, and receiver 2 receives
Y> which is given below:

Xo1, if X2 = X,
Y, = .
e, otherwise.

Y

So, the second channel outputs X7 noiselessly if the second
encoder ‘guesses’ the first encoder’s output correctly (i.e.
X722 = X1), otherwise an erasure is produced. The following
proposition gives a set of sufficient conditions for the trans-
mission of correlated sources over this interference channel:

Proposition 5. The sources X and Z are transmissible if there
exist €,y,d > 0, and n € N such that:

hp(y +d)
100 = (- (1- 12252

1+/nV ¥kv@0~'(y)
o (LTET@E 00y,

H(Z) = ((1 - e logq) (1 -

hy(y +d))
1—hp©) )’
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where hp () is the binary entropy function, V. = (1 —
5)log2(1%‘5) is the channel dispersion, and V(d) is the
rate-dispersion function as in [30], and Q(.) is the Gaussian
complementary cumulative distribution function.

For a fixed n, € and y, we denote the set of pairs
(H(X), H(Z)) which satisfy the bounds by S(n,¢€, y).

Proof. First we provide an outline of the coding strat-
egy. Fix n,m € N,d,y € R, where n <« m. Let

-1
k=n (1 — ’ﬂ::&; . The encoders send km bits of the

compressed input at each block of transmission. The first
encoder transmits its source in two steps. First, it uses a
fixed blocklength source-channel code [30] with parameters
(k,n,d,y). The code maps k-length blocks of the source to
n-length blocks of the channel input, and the average distortion
resulting from the code is less than d + y. In this step,
the encoder transmits the source in m blocks of length k.
A total of nm channel uses are needed (note that n<k).
In the second step, the encoder uses a large blocklength
code to correct the errors in the previous step. The code
has rate close to ﬁlfz;g)), and its input length is equal
to km.

The second encoder only transmits messages in the first
step of transmission. It uses the same fixed blocklength code
as the first encoder and the source sequence Y* to estimate
the outcome of the first encoder. It sends this estimate of the
first encoder’s output on X%,. Since P(X* = Y*) = (1 — ¢)f,
we conclude that Xk and sz are equal at least with
probability (1 — €). The encoder sends the source Z using
X»>1 over the resulting g-ary erasure channel which has
probability of erasure at most (1 — €)*. The following
provides a detailed descriptions of the coding strategy:

Codebook Gel}eration: Fix n,e,d. Let k =
n (1 - }i”_(Z;r(g)) ) . Let C; be the optimal source-channel
code with parameters (k,n,d,y) for the point-to-

point transmission of a binary source over the binary
symmetric channel, as described in [30]. The code transmits
k-length blocks of the source using n-length blocks of the
channel input; and guarantees that the resulting distortion
at each block is less than d with probability (1 — €) (i.e
P(dy (X", X") > d) < y, where X is the reconstruction of
the binary source X at the decoder). In [30], it is shown that
the parameters of the code satisfy:

n(l — hyp(0))—k (H(X) — hp(ax *d))
=/nV +kVd)0~'(y) + 0(log(n)).

Since P(dy (X", )A(”) > d) < v, it is straightforward to show
that the average distortion is less than or equal to y +d. Also,
construct a family of good channel codes C),, m € N for the
binary symmetric channel with rate R,, = 1 — hp(0) — Ap,
where 4,, — 0 as m — oo. Next, construct a family of
good channel codes Cj,, m € N for the g-ary erasure channel
with rate R,, = (1 — €)*log(q) — An. Finally, randomly and
uniformly bin the space of binary vectors of length kn with rate
R’ = h,(d + y). More precisely, generate a binning function
B : {0, 1}¥m — {0, 1}kmR’, by mapping any vector i to a value
chosen uniformly from {0, 1}k’"R/.
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Encoding: Fix m. At each block the encoders transmit km
symbols of the source input. Let the source sequences be
denoted by X(1 : k,1 :m),Y(1 : k, 1 : m), Z(1 : k, 1 : m),
where we have broken the source vectors into m blocks of
length k. In this notation X (i, j) is the ith element of the jth
block, and X (1 : k, j), j € [1,m] is the jth block.
Step 1: Encoder 1 uses the code Cj to transmit each of the
blocks X (1 : k,i),i € [l1,m] to the decoder. The second
encoder finds the output of the code Cy when Y (1 : k, i) is fed
to the code, and transmits the output vector on Xo5(1 : n,i).
The encoder uses an interleaving method similar to the one
in [12] to transmit Z. For the sequence Z(1 : k,1 : m),
it finds the output of C, for this input and transmits it on
Xo1(1:n,1:m).
Step 2: The first encoder transmits B(X (1 : k, 1 : m)) to the
decoder losslessly using C; o/
Decoding: In the first step, the first decoder reconstructs X (1 :
k, 1 :m) with average distortion at most y + d. In the second
step, using the bin number B(X (1 : k, 1 : m)) it can losslessly
reconstruct the source, since C;, ., is a good channel code.
Decoder 2 also recovers Z(1 : k,1 : m) losslessly using
Y2(1 : k, 1 :m) since C;, is a good channel code.

The conditions for successful transmission is given as
follows:

n(l —hp(9))—k (H(X) — hp(ox * d))

> /nV + V()0 (y) + O(log(n)),

n(l — e)*log(q) > kH(Z).

Simplifying the?e conditions by replacing k& =
n(l - };I’(Z;L(’(;)) ) proves the proposition. O

The bound provided in Proposition 5 is not calculable with-
out the exact characterization of the O (X28%) (")) term. However,
we use this bound to prove the sub-optimality of SLCEs. First,
we argue that the transmissible region is ‘continuous’ as a
function of €. Note that for € = 0, sources with parameters
(H(X),H(Z)) = (1 — hp(0),logq) are transmissible. The
region in Proposition 5 is continuous in the sense that as €
approaches 0, the pairs (H (X), H(Z)) in the neighborhood of
(1 — hp(9), log q) satisfy the bounds given in the proposition
(i.e. the corresponding sources are transmissible).

Proposition 6. For all A > 0, there exist €y, 79 > 0, and
no € N such that:

Ve <€y : (1 —hp(0) — 2,logqg — 1) € S(no, €, y0).

Proof. Follows directly from Proposition 5. O]

For an arbitrary encoding scheme operating on blocks of
length n, let the encoding functions be as follows: X| =
e (X"), and (X3, X)) = (e (Y", Z"), epp(Y", Z")). The
following lemma gives an outer bound on H(Z) as a function
of the correlation between the outputs of ¢; and e,;.

Lemma 7. For a coding scheme with encoding functions
e (X™M), e (Y, ZM), e50(Y", Z™), the following holds:

1 n
H(Z) < =3 Pleni(X") = eni(Y", Z") + 1.
i=1

(12)
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—{Enc. 1

— Enc. 2

Fig. 5. A CS-MAC example where SLCEs are suboptiomal.

Proof. Since Z" is reconstructed losslessly at the decoder,
by Fano’s inequality the following holds:

H(Z"Y ~ 1yl 2 L 1(Em, v z7)

= I(E"; Z") + I(Y}; Z"|E")
®) c
< H(E")+ Y Pleri(X") = eni(Y", Z") logg

i=1

© S
<n+ Y Pleni(X") = exni(Y", Z")logq,

i=1
where in (a) we have defined E" as the indicator function of
the event that Y, = e, in (b) we have used Equation (11)
and in (c) we have used the fact that E" is a binary
vector. ]
Using Theorem 4, we show that if the encoding functions
are generated using SLCEs, P(e1,;(X") = exn,(Y", Z")) is
discontinuous in €. The next proposition shows that SLCEs

are sub-optimal:

Proposition 7. There exists 1 > 0, and q € N, such that
sources with (H(X), H(Z)) = (1 — hy(0) — A,logqg — 1) are
not transmissible using SLCEs.

Proof. Let X| = E;(X"), and Xoon = Ej o(Y"),7" €
{0, 1}" be the encoding functions used in the two encoders
to generate X| and Xp. If H(Z) ~ log(g), from (12),
we must have P(E; ;j(X") = Exnaj(Y") ~ 1 for
almost all of the indices j € [1,n]. From Theorem 4, this
requires Pj:ii ~ 1, which requires uncoded transmission

(ie. X! = E(X™) ~ X™). However, uncoded transmission
contradicts the lossless reconstruction of the source at the first
decoder. O

The proof is not restricted to any particular scheme,
rather it shows that any SLCE would have sub-optimal
performance.

B. Transmission of Correlated Sources Over the Multiple
Access Channel (CS-MAC)

We examine the CS-MAC setup shown in Figure 5. Again,
we restrict our attention to bandwidth expansion factor equal
to one. Here, the source X is a g-ary source. The source Z is
defined as Z = X @y N, where N is a g-ary random variable
with
if i =0,
ifi € {1925 »5]_1},

P(Ne :i): [:6’

g—1
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and

Py |17 =0,
== ifie{l,2,,q—1),

9
g—1
The output is:

Us @, N5, it Uy = Us,

Y=UANUy®; N5 =
e qa[m if Uy # Uy,

where Uj and U; are the outputs of Encoder 1 and Encoder 2,
respectively. The goal is to transmit both sources X and Z
losslessly to the decoder.

In this setup, there are two strategies available to the
encoders. The first strategy is for both encoders to transmit
the sources simultaneously. In this case, the encoders must
have equal outputs. Otherwise, the decoder receives the noise
Ns. So, in this strategy, the encoders must ‘guess’ each other’s
outputs. The second strategy is to make a binary symmetric
channel with noise ¢ for one of the encoders, while the other
encoder does not transmit any messages. For example, in order
to create such a channel for Encoder 1, encoder two transmits
a constant sequence Uy = (j, j,---, j), j € [1,¢q —1]. Then,
Encoder 2 can transmit a binary codeword using alphabet
{0, j}. The rates of transmission for this strategy is:

Rs;1 = max I(U;;Y)
p(Uy)

S A2 )
T2 g—1 )2 g—1 ) g—1" " g—1

%Q_&é,m,é)
qg—1 qg—1

Rs 2 =0.

The following Proposition gives a condition under which the
sources are transmissible:

Proposition 8. There exists positive reals Ac,e€ € (0, %],
with lim¢ 0l = 0, such that the sources X and Y are
transmissible if the following condition is satisfied:

H(X) <logq — H(Ns) — e.

Proof. The ideas in this proof are similar to the ones in Propo-
sition 5. We provide an outline of the proof here. There are two
steps for the transmission of the sources. First, the first strategy
described above is used to transmit at a rate close to logg —
H (Ns). In this step, the encoders use a finite blocklength code
to maximize their probability of agreement. In the second step,
the encoders use the second strategy described above to correct
the errors from the first step. The errors in the first step vanish
as € — 0, since the sources become equal with probability
going to one. So, the rate of transmission approaches the rate
of the first step which is close to logg — H (Ns). We provide
a more detailed summary of the proof: Fix n. Both encoders
use an finite blocklength source-channel code for the g-ary
symmetric channel with noise Ny to transmit the sources. Let
the blocklength of this code be equal to n, and the rate be
equal to logg — H (Ns) + O(ﬁ). From the problem statement
P(X" = 2Z") = P(N! = 0" = (1 —¢)". Since U[ is a
function of X", a and Uf is a function of Z", we conclude
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that P(U' = Uy) > (1 —€)". The encoders then take turns to
send refinements to the decoder. This is done using the second
strategy described above. The rate required for this part of the
transmission is (1_?” + H(N‘) . Note that (1 5) + H(N‘ goes
to 0 as e — 0. Th;s complsetes the proof. O

The following lemma provides an upper-bound to the
entropy of X as a function of € and the correlation between

U; and U;.

Lemma 8. For a coding scheme with encoding functions
Ul = e (X"), U} = ey(Z"), the following holds:

l n
HX) < ~> P(U1i =U) (logg — H(N;) + 1. (13)
i=1
Proof. Similar to the proof of Lemma 7, we use Fano’s
inequality to prove the lemma. Since X" is reconstructed
losslessly at the decoder, by Fano’s inequality the following

holds:
HX") ~ I(UUy; Y™

n n
<D I(U1iU2i: V) @ D I(Ei, Ui iUsi; Yn)
i=1 i=1

=D I(Ei; ;) + 1(U1,iUs; Vil E)
i=1
Y HE)+3 P = Un)(¥". 27 (ogq — H(N)
i=1

n
c
L n+> P = Usy) (logg — HNy)),
i=1
where in (a) we have defined E; as the indicator function
of the event that U;; = Uy,i € [l,n], in (b) we have
used that I(Ul’iUzji; Yi|Ei) = P(E; = 0)-0+ P(E; =
1)I(U1,; Y|Ur; = Uz;) and in (c) we have used the fact
that E” is binary.
]

Since for SLCE’s P(Uy,; = U,,;) is bounded away from
1 for € # 0, we conclude that there exists ¢ and Ns such that
LS P(Uii = Un) (logq — H(Ns)+1 < logg—H(Ny).
So, SLCE’s are suboptimal in this example as well.

VII. CONCLUSION

We derived a new bound on the maximum correlation
between Boolean functions operating on pairs of sequences
of random variable. The bound was presented as a function
of the dependency spectrum of the functions. We developed a
new mathematical apparatus for analyzing Boolean functions,
provided formulas for decomposing the Boolean function into
additive components, and for calculating the dependency spec-
trum of these functions. The new bound may find applications
in security, control and information theory.

Next, we characterized a set of properties which are
shared between the SLCEs used in the literature. We showed
that ensembles which have these properties produce encod-
ing functions which are inefficient in preserving correlation.
We derived a probabilistic upper-bound on the correlation
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between the outputs of random encoders generated using
SLCEs. We showed that the correlation between the outputs
of such encoders is discontinuous with respect to the input
distribution. We used this discontinuity to show that all SLCSs
are sub-optimal in two specific multi-terminal communications
problem involving the transmission of correlated source.

APPENDIX

A. Proof of Lemma 2

Proof. By definition, any element of G;, ® G;, ® --- ® G,
satisfies the conditions in the proposition. Conversely, we show
that any function satisfying the conditions (1) and (2) is in the
tensor product. Let f ZJ fJ, fJ €0;,®G,® --®7;, bean
arbitrary function satisfying conditions (1) and (2). Assume
ir = 1 for some k € [1, n]. Then:

2 ~ ~
02 Exnx, (Z filxu) @ Z Exoix, (filX~i,)

1 2 ~
Qs Exn|x~,k(mX~.k>” Z fis

J:jk=0 J:jk=0

where we have used linearity of expectation in (a), and the
last two equalities use the fact that fj e G, ®G;, ®---®G;,
which means it satisfies properties (1) and (2). So far we have
shown that f = an fJ Recall that i is given in the statement
of the proposition. Now assume iy = 0. Then:

> hi=F L Exx,, O AlX,)

j=i j=i

=ZEx"\xNik,(f~j|X~ik/)= Z fi=

j=i Jj=i:jir=0

So, f = Zizjzi f] = f, By assumption we have f~, €, ®
G, ® - ®G;,. -

> fi=o.

izitj=1

B. Proof of Lemma 3

Proof. 1) For two n-length binary vectors i, and j, we write
i <jif iy < jk,Yk € [1,n]. The set {0, 1}" equipped with
< is a well-founded set (i.e. any subset of {0, 1}" has at least
one minimal element). The following presents the principle of
Noetherian induction on well-founded sets:

Proposition 9 (Principle of Noetherian Induction [31]). Let
(A, R) be a well-founded set. To prove the property P(x)
is true for all elements x in A, it is sufficient to prove the
following

1) Induction Basis: P(x) is true for all minimal elements in
A.

2) Induction Step: For any non-minimal element x in A,
if P(y) is true for all minimal y such that y < x, then it
is true for x.

We will use Noetherian induction to prove the result. Let
ij,j € [1,n] be the jth element of the standard basis.
Then ¢;; = Exnx;(€[X;). By the smoothing property of
expectation, Exn (éij) = Exn(¢) = 0. Assume that Vj < i,
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Exn (éJ) = 0. Then,

Exn (&) = Exn | Exnx; G1X0) — D ¢
j<i
=Exn () — D Ex1(G) =0->_0=0.

j<i j<i

2) This statement is also proved by induction. Ex»|x;(e|Xj) is
a function of Xj, so by induction ¢; = Exn|x, (¢|X;) — Zj<i ek
is also a function of Xj.

3) Let iy, k € [1,n] be defined as the kth element of the
standard basis, and take j, j' € [1,n], j # j. We have:

Exn (eijéi,) = Exn (Exnx;(e|X))Exnx, (€|X ;)

(@) ~ ~ (b) ~

= Exn (Bxnjx; (21X ) Exs Bxnx , (B1X 1)) = Ex. (6) =0,
where we have used the memoryless property of the source in
(a) and (b) results from the smoothing property of expectation.
We extend the argument by Noetherian induction. Fix i, k.
Assume that Ex» (&jej) = 1(j = j)Ex» (Ejz),‘v’j <i,j <Kk,
and Vj <1i,j < k. Then, we have

Exn (éiek)
=Exn [ | Exnx; @1X0) & | [ Exnixi @1X6) - &
j<i j <k
=Ex, (Exr1x € X)Exr x, (€1 XK)) —>_Exn (&iExn x, (X))
j<i

= > Exr (G7Exnx@X0)) + > Exn(@y).

j<k j<ij <k

The second and third terms in the above expression can be
simplified as follows. First, note that:

éi = ]EX”\Xi(é|Xi) — Zé'] = Zéj = ]EX”|Xi(é|Xi)- (14)
j<i j=i

Our goal is to simplify Exn» (éjExn|xj, (€] Xj)). We proceed by
considering two different cases:
Case 1:i £ k and k £ i:

Letj <i:

~ ~ 14 - "
Exn (ejExn|xk (6|Xk)) (z) Ex” (e.] Z el))
1<k

= > Ex(Ga) = D> 1G = DExs (&) = 1(j < KEx: @)

1<k 1<k
By the same arguments, for j’ < k:
Exn (67Exnx,(@1X) = 1G' < DExn (&).

Replacing the terms in the original equality we get:

Exn(éiex) = Exn (Exnx; (€] X1)Exn x, (€ Xk)) (15)
> 1G < KEx (&)
j<i
=1 < DEx @+ D 1G=§)Ex ().
j'<k j<ij <k

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

Note that:

DAG=RECE = D Ex@) = D Exi(@

j<i j<ij<k j<ink
DU =DEw@ = Y Ex@y= D Ex(@)
i<k j<k.j<i j<ink
s s ~2 52
> 1G=Ex @ = D Exn (@)
j<i,j’ <k j<ink

Replacing the terms in (15), we have:

Exn (&iék) = Exn (Bxn x; (€1 X)Exn x, (€1 X)) — D Exn (&)

j<ink
@ . .
= Exn (Exn g, EXMIXink) — D Exn (&)
j<ink
b ~ ~ 14
© Exn (B x,., EXMIXind) —Exn [ (D a7 | 2o,

j<ink

where in (b) we have used that ¢;’s are uncorrelated, and (a) is
proved below:

Exn (Ex»x; (€1 Xi)Exn x, (€] Xx))

=> P (xi/\k)(

Xink

z P (xji—k+ ) Exn x; (€] Xi) | x

Y-k

Z P (x i+ ) Exn x, (€] Xk) )

Pkt

= Piak)Exnx, , €1xirK)

Xink

= Exn (Exn x,,, E(X") Xink)).
Case 2: Assume i < k:

Exn (eiex)

= Exr (Exoix, G XD Exnx,, @1X10)) — > 1G < KEx» (&)
j<i

-G <DEx@) + D LG =J)Ex @)

i<k
( . .
@ Exn (B, C1X0) — D Exn (@)

j<ij <k

j<i
e+ T Ee@
y=i j=i
= 0,

where in (a) we have used (a) proved above.

Case 3: When k < i the proof is similar to case 2.

4) Clearly when |i| = 1, the claim holds. Assume it is true for
all j such that |j| < |i|]. Take i € {0, 1}" and ¢ € [1,n],i; =1
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arbitrarily. We first prove the claim for k =i —i;:

Exnx, (@ Xi) = Exopxy, | [ Bxepxi @1X0) — D8 | 1Xk
j<i
= Exoxy (Exonix; CIXD)IXk) — D Exnyx (61 X10)
j<i
© Exnpx @1X10) — D Exnp, 61X
j<i
®) ~ -
= D &G Exx(ElXi)
j=i—iy j<i
( ~ ~
9 D Bxopx @il Xi) — D Exnyx (61 X10)
j<iciy j<i
=D Exonix G, |1 Xk)
sF#t
d
( )ZEX"\Xk i @iy [ Xk—iy) = @y
s#t

where in (a) we have used i > k, (b) follows from equation
(14), also (c) follows from j < k, (e) uses kA (i—iy) = k
and finally, (d) uses the induction assumption. Now we extend
the result to general k < i. Fix k. Assume the claim is true for
all jsuch thatk < j <i(i.e VK < j <, Exn‘xk(éxﬂxk) =0).
We have:

Exn x, (€1 Xk)

— I,

= Exoix [ Exoixi @1X0) — D &1 Xk

j<i

= Exnx, (Exnx;(€1Xi)1Xk) — ZEX”\Xk(éﬂXk)

i<k
- . (14
= Exnx, (]l Xk) — D _¢j =o.
j=k
]
C. Proof of Proposition 3
Proof.
P = Vary, (&(X") = Ex; (&} (X™)) — E},(&(X")
2
QEy, | [Exx@lXi) - 2] | -0
j<i
= Ey, (Einlxi (é|Xi)) — 2> Ex, (Exnx, @X0)&)
j<i

j<i 1<i

2

b ~ ~ ~
(=) EXi (E%(U‘Xi(ep(i)) - 2ZEXi EX”‘Xi(Z €]|Xi)ej
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Yy, (Ein‘xi(axi)) 2> Ex, [ D Exnx@1X0)3

j<i 1<i
2
+ Ex, ZeJ
j<i
d
( )EX, (Ei nx, (@1Xi )) - ZZEXl (Zewj)
j<i 1<i
2
+Ex, [ [ 204
j<i
o8 (IE -
xi (Bxox, G1X0)) = 2D D 1G = DEy, (218
j<i l<i
2
+Eyx, Zéj
j<i
2
— Ey, (E%(nlxi (élXi)) 23 Ex, @) +Ex | [ D4
j<i j<i
= Ex; (Bxn x, G1X0) — 2D Ex; (&) + D > Ex,(&éx)
j<i j<i k<i
L Ex, (B, @X0) —2 > Ex, @)
j<i
+ D> 1(G = WEx; €]) = Ex, (Bxnx, (1 X0) — D P,
j<i k<i j<i

O

where (a) follows from condition 1) in Lemma 3, b) follows

from the decomposition in Equation (14) in the appendix,

(c) uses linearity of expectation, (d) holds from condition 2) in

Lemma 3, and in (e) and (f) we have used condition 1) in
Lemma 3.

D. Proof of Theorem 1

Proof. This proof builds upon the results in [1]. The proof
involves three main steps. In the first two steps we prove
the lower bound. First, we bound the Pearson correlation [32]
between the real-valued functions e, and f . In the second
step, we relate the correlation to the probability that the two
functions are equal and derive the necessary bounds. Finally,
in the third step we use the lower bound proved in the first
two steps to derive the upper bound.

Step 1: Let s £ Px(e(X") = 1), r £ Py(f(¥Y") = 1).
From Remark 1, the expectation of both functions is 0. So,
the Pearson correlation is given by

Exn yn ()
(rs(1 —s)(1 —r))2

Our goal is to bound this value. We have:

Exnyn @) L Exnye [ (D &S Ao

ic{0,1}"  kel0,1)n
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2> > Een@h. (16)

ie{0,1}" ke{0,1)"

In (a) we have used Definition 5, and in (b) we use linearity
of expectation. Using the fact that ¢; € G;, ® G;, ® --- ® G,
and Definition 4, we have:

G=a [ hx), o= [] 2.

ti=1 t:k =1

A7)

where,

fz(X) _ {1 -9,
—q.

ifX =1,
ifx=0,"

1—r, fY=1,
—r. if Y =0,
(13)

g(Y) = [

We replace ¢; and fk in (16):

a [] Axo

ti =1

~ =~ (17 ~
Exn,yn @ fi) 2 Exn yo de [T 8

sikg=1
(19)

@ By [ [T hxo [] 8
tir=1 stkg=1

b ~ - ~
Qaado [ [ A0z |Ex| [] A0

tip=1,k;=1 t:i;=1,k;=0
<Eyo [ ] &)
t:i;=0,k;=1

©Q 13 = K)cidk H Exn,yn (ﬁ(X,)g(Y,))
tir=1

€126 = Wad( — 205 [] B3, (2200)) B, (£201)

t:i;=1

© 16 = K)(1 - 20MPQ; = 1( = KCGPIQ; . (20)

(a) follows from linearity of expectation. In (b) we have used
the fact that in a pair of DMS’s, X; and Y; are independent
for i # j. (c) holds since from Lemma 3, E(&;) = E(f;) =
0,Vi € [1, n]. We prove (d) in Lemma 9 below. In (e) we have
used proposition 1.

Lemma 9. Let g(X) and h(Y) be two arbitrary zero-mean,
real valued functions, then:
1 1
Ex,y(8(X)h(Y) < (I = 20)E (6> (X)E; (P (V).

Proof. This is a well-known result [33]. A proof is provided
here for completeness: Let the functions be given as follows:

if X =0 ifY =0
. . o ={" !
g ifX=1 o ifYy=1

Also, let P(X = 1) = p, and P(Y = 1) = q. The zero-mean
condition enforces the following equalities:

a(l—p>+ﬁp=0:ﬁ=¥,

—(1—q)y
—

g(X) ={

y1—q)+0g=0=0=
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Next, we calculate the joint distribution of Pxy. Let P; ; e
P(X=i,Y =j),i,j€{0,1}. We have the following:

Poo+ Py =PX=0)=1-p,
Poo+Pio=PY=0)=1-gq,
Poo+Pii=PX=Y)=1-g¢,
Poo+ Po1+ Pro+ P =1

Solving the system of equations yields:

+q+e + € —
Po=1-——  pmi=T—=—L @
+e€— +qg—¢€
Po=t—=—1  pa== (22)
With the following constraint on the variables:
p+e>gq, p+q=e,
q+¢€>p, pt+qg+e<2.
We have:
E h
: X,Y(gl) (23)
Eg (gHEy (h?)
_ a-9) _ (d-p) (d-¢)(d-p)
3 ay (Po,o Po17—; Pro~—= + PLi—; )
a _ )2 1 — 2 1
ay (((1 =)+ S (- gy + U528 )2)
_ (I-q¢) (I-p) (-¢)(1—=p)
_ Py PO,I—q Pl,O—p + P g
1-py3l=qy}
(57)2(75)2
_ Poopqg—Poi(1—q)p
- 1
(pg(1 = p)(1 —q))?
_ P =p)g— Pl —q)( - p)
1
(pq(1 = p)(1 —q))2
@) (1= B9 pg — (B=2)(1 - g)p
- 1
(pg(1 —p)(1 —q))?
N —(EE=2) (1 = p)g + (B (1 — ¢)(1 - p)
1
(pq(1 = p)(1 —q))2
_pq+ED (- p)(1 - p) —ra)
- 1
(pg(1 = p)(1 —q))2
(52) (g(1 = p) — p(1 —
n ) (g p)—p lq)))Jr
(pq(1 = p)(1 —q))2
S(pg+p(l—q)+q(1—p)+1-p)(d—gq))
1
(pg(1 = p)(1 —¢q))2
Cpg+ 0 -p-q)-Hla-p) -5
- 1
(pq(1 = p)(1 —q))2
—2pg —
pP+q—2pq—e¢ 24)

C2(pg(1—p)(1—q)*
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We calculate the optimum point by taking partial
derivatives:

o E h

;_ggﬁl_zoi

PER(6DE; (1)

2(1 = 29)(pg(1 — p)(1 — q))?

- %\/q(l—q)(erq—qu—E):O

Yol —29)p(1 = p)— (1 =2p)(p+9 —2pg —€) =0
= 2p(1 = p)(1 —29) — p(1 —2p)(1 — 2q)
—(1=2p)g+(1—-2p)e=0

= p(1-29) - (1-2p)g+ (1 -2p)e =0

=p—qg+0—-2p)e=0. (25)

Where in (a) we have used p,q ¢ {0, 1} to multiply by

v pq(1 — p)(1 — g). Taking the partial derivative with respect
to ¢, by similar calculations we get:

0 Exy(gh)
—————"—=0—>¢—p+(1-29)

1 1
% 2 (42)E; (h2)

(26)

In order for (25) and (26) to be satisfied simultaneously,
we musthavee =0, p=q,ore = p+g=1,or p=¢q = %
For € ¢ {0, 1}, we must have p = ¢ = % in which case the
value in (24) is:

Ex y(gh)

T T =1-2e.
Ex(8HE; (h?)
This completes the proof of the Lemma. O
Using equations (16) and (20) we get:

11
> GPlQl.
i

Step 2: We use the results from step one to derive a bound
on P(e # f). Define a & P(e(X") =1, f(Y") =1),b £
P(e(X") =0, f(Y") = 1), ¢ 2 P(e(X") = 1, f(¥") = 0),
and d £ P(e(X") =0, f(Y") = 0), then

Ex(ef) <

Exn yn (B(X™) f(Y™))

=a(l—s)1—=r)—>bs(1—r)—c(l —s)r +dsr, (27)
We write this equation in terms of ¢ = P(f # g), s, and r

using the following relations:

1) a+c=s, 2) b+d=1-s,
3) a+b=r, 4) c+d=1-r, 5) b+c=o
Solving the above we get:
:s—i—r—a’ b_r—}—a—s, 28)
2 2
c_s—r—i—a, d_l_s—i—r—i—a (29
2 2
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We replace a, b, ¢, and d in (27) by their values in (29):

g_ s =)
+

r—s s+r 11
(— ) - DGR Q]
i

11
=0 >s+r—2rs -2 GPQ]

=0 > (\/s(l —r)— \/r(l — s))2 +2/s(1 —s)yr(1 —r)
—ZZCiPi%Qi%

=0 >2J/s(0—s)r(l—r) — 22 CiPi%Qi%

On the other hand Ex (&%) = s(1 —s) = > ; P;, where the
last equality follows from the fact that e;’s are uncorrelated.
This proves the lower bound. Next we use the lower bound to
derive the upper bound.

Step 3: The upper-bound can be derived by considering
the function A(Y") to be the complement of f(¥Y") (i.e.

hY™ = 1 &2 f("). In this case P(h(Y") = 1) =
P(f(Y") = 0) = 1 — r. The corresponding real function for
h(Y™) is:
3 ny __
o = r %fh(Y)—l,
—(1=r) ifh¥") =0,
M ny __
-1 I =0 by = —fam.
-1 =r) if fF(Y") =1,

So, h(Y") = —Zifi. Using the same method as in the

previous step, we have:

Z CiP.% Q.%

= P(e(X") # h(Y")) = 2 /ZP- /ZQ, ZZC-P Q;

On the other hand P(e(X") # h(¥Y™)) = P(e(X") # 16

fYM) = Ple(X") = f(¥Y") =1 — Ple(X") # f¥")).
So,

L= P £ far) =2 SR [S -2 6P Q]

= P(e(X") # f(Y") =

1-2 > P /ZQi-FZZCiPi%Qi%.

This completes the proof. O

Exn yn (éﬁ) = —Exn yn (éf) <

E. Proof of Theorem 2

Proof. The proof of Theorem 2 follows similar steps as the
proof of Theorem 1. The only difference is in the proof of
step 1.
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Step 1: Let ¢ = Px(e(X") = 1), r £

We have:

Py(f(¥") = 1).

Exn yn(2f) @ Exn, yn

>

ie{0,1}"

@ Z Z Exn yn (& fx)-

ie{0,1}" ke{0,1)"

>
ke{0,1}"

(30)

In (a) we have used Definition 5, and in (b) we use linearity
of expectation. Using the fact that ¢; € G;, ® Gj, ® --- ® G,
and Lemma 1, we have:

a(X") =

>

Vier:de[l,|X]|-1]

>

Vier:lell,|Y|-1]

Ci,(1)rer H hi, (X)),

teT

di e | ] 21 (Y0,

tet

A" = 31)

where ¢i (., € R, and A;(X),1 € {1,2,---,]|X| — 1}, and
gi(Y),l € {1,2,---,|Y| — 1} are a basis for Zy 1 and Zy,,
respectively. We have:

Exn yr (@ fi) L Exoyn (& f)1G = k)
D 16 = K Exs @GEyopxs (FIX™)

(c 1 1 ~
216 = WEL, @)EL (B2 xo (A1X™)

1 1

= 16 = P E}, (Ef x0 (fil X")), (32)
(a) follows by the same arguments as the ones in step 1 of
the proof of Theorem 1, (b) follows from the law of total
expectation and the fact that ¢ is a function of X”. In (c) we
have used the Cauchy-Schwarz inequality. It only remains to
find bounds on Exn» (E%n‘ xn ( £i1X™)) which are functions of
Qi, v, and Nj. Let (i1,i2,--- ,in;) be the indices for which
the elements of i are equal to one. Note that:

Eynxn (filX") = Eyyx; (fil Xi)
= By 1%iy, (]EYHNi Xiciy, (filXi—iNi) 1X z'Ni)

=By, 1Xiy, (EY;NFI \X;er(' : '(EYil |Xi, (fi|Xi1)|Xiz)‘ : ')|Xizvi)»
(33)

where the first equality follows from the fact that f; is
a function of Yj. The rest of the equalities follow from
the discrete and memoryless properties of the input. For
ease of notation define the following projection operators for
1 <i<n:

Oy, Zy; — Ix,,
h(Y;) — Ey,x, (h(Y})).

ITx, can be interpreted as the projector of zero-mean functions
of the random variable Y; onto zero-mean functions of the
random variable X;. We can rewrite Equation (33) as follows:
0"'0HX,»|(fi)~

Eynxn (filX") = Tx, o Tlx (34)

iNg—1
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We find bounds on Ey» (E2"|x" (filX™)) as follows:
Exn (B (fil X™))

2
= Exn ((HXiNi [e] HXiNi—l ©---0 I_IX,'1 (ﬁ)) )

(@)
= QiIIHX;Ni o HX[Ni—l SR HX;I II

b
2 QillTL, |1 - 1TTx

Q Qilimy, I1",
where in (a) the operation norm is defined as ||II|]| =
sup, E(I1%(¢)) where the supremum is taken over all
zero-mean functions e with unit variance. (b) follows from the
discrete memoryless property of the inputs. Finally, (c) holds
since the source elements are identically distributed. On the
other hand, we have:

Y = suph,geﬁExl,h (h(Xl)g(Yl))
= supp gecEx, (h(X1)Ey, x, (€(Y1)|X1))

1 1
D supgerEy (R(XDEZ, B} |y, (e(Y1)IX1))

1

Y supgerEy B3, x, (8(¥1)IX1)
D |1,

where L is the set of all pairs of functions g(X) and h(Y)
with zero mean which have unit variance. (a) follows from
the Cauchy-Schwarz inequality and the fact that equality is
satisfied by taking g(X1) = cEy,x,(h(Y1)|X1) where the
constant c¢ is chosen properly, so that g(X ) has unit variance.
The quality (b) holds since h(X{) has unit variance, and
(c) holds by the definition of operator norm. Combining
equations (32), (35), (36) we have:

Il [HIx; [l

iNg—1

(35)

(36)

- L1
Exn yn(@ifi) < 1G=k)yMPQ}.

The rest of the proof follows by the exact same arguments as
in steps 2 and 3 in the proof of Theorem 1. O

F. Proof of Lemma 5

Proof. We provide an outline of the proof that the three
properties in Definition 8 are satisfied:

1) As a reminder, the set B, (X") is the set of sequences x"
which may be mapped to the same output sequence u” as the
output of x”. In this coding scheme B, (x") is as follows:

Bu(x") = {F"|3u" : (", u"), (&, u") € AV(X, U)}.

Following the notation in [3], let V(x") be the set of all
conditional types of sequences x" given x”, and let T, (x")
be the set of all sequences x” which have the conditional type
v € V(x") with respect to the sequence x”. Then:

1B, = D" IBG") [Tl
veV(x")
Note that |B(x™) () T, (x™)| # 0 if and only if there exists a
joint conditional type 0, Klan such that |Py x — Py,x| < €
and |f’U)~( — Pyx| < € and 15U‘X = v, where 13UX)~( is the
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joint type of the sequences in 5U, Kl with x". As a result we

have:
D~EV(X”)
EIUU,)?lX” :

|Py.x—Pu x|<e€|P,; g —Pux|<e
U.X

| B (x™)| = |BG™) () To (™).

By standard type analysis arguments we conclude that:

|Bn(xn)| < 2maxn(H()~(|X)+(5,,),

where the maximum is taken over all distributions P,y % such

that Py x = Py 5 and J, is a sequence of positive numbers

which converges to 0 as n — oo. Since all of the sequences
in B,(X") are typical we have:

PR € By & D0 oyt (K0~ 2 i,
|AZ(x™)]
Next we show that for x" ¢ B, (x"):

(1 —27"9X)P(E(x") P(EE")
< P(E(x"), EE") < (1 427"%)P(E(x") P(EFE")).
(37)

Note that by our construction x” is mapped to a sequence in
C (N AZ(U|x™) randomly and uniformly. So:
P(E(x") = c"|C)
1(c" e CNANUIxM)
ICAAZUIXM)]
= P(E(") =c")

1 (" e CN AZ(UIx™))
CCNARUx") — {c"}H + 1

n n n !
=P (C ECﬂAE(le )) EC(ICHA?(UI)C”) _ {cn}l + 1)

By a similar argument for X" ¢ B, (x") we have:
PE(x")=c", EG")=c") =
P(c" e CNAI(U|x"), " e CNALUIZ™) x

1 1
Ec ( i )
ICAAZUIx™) —{c"} + 1IC ) Aenqujzmy — {¢"}] + 1
We show the following bound:
P (" eCNAXUIx"), " e CNALUIE"))
<P ("eCNAMNUIx"))P (&" € CNAT(U|F")) (14+27"%).
(38)

Assume that ¢ € AZ(U|x"), and ¢" € AZ(U|x"), otherwise
the two sides are equal to 0. The following equalities hold by
the construction algorithm:

R L
P (& eCNALUR") =P (& eC) = IA;(lJ)I’

P(c"eCNALUIx"),c" e CNALUIZ™))
:P(c” eC, " EC)
()

)
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Using the above it is straightforward to check that the bound
in (38) holds. Similarly, it follows that

EC( 1 1 _ ) <
ICVAZUIx") —{c"HALIC ) Aen(uzny — ("} +1

1
Fe (|c NAN U™ — ()] + 1) )
)(1 +270%),

1
Ec( .
IC N Aenzny — (€} + 1

Multiplying the two bound recovers the right-hand side of the
inequality in (37). The left-hand side can be shown by similar
arguments.

2) As n becomes large, the ith output element E;(X") is
correlated with the input sequence X" only through the ith
input element X;:

Vo>0,IneN:m>n=Vx" €{0,1}"",v € {0, 1},
|Ps(Ei(X™) = v|X" = x") — Ps(E;(X™)=0|X; = x;)| <.

The proof is as follows: For a fixed quantization function
e {0, 1} — {0, 1}, e(X™) is a function of X™. However,
without the knowledge that which encoding function is used,
E;(X™) is related to X only through X;. In other words,
averaged over all encoding functions, the effects of the rest of
the elements diminishes. We provide a proof of this statement
below:

First, we are required to provide some definitions relating
to the joint type of pairs of sequences. For binary strings
u™, x™, define N(a,blu™,x™) £ Hjluj = a,x; = b}l,
that is the number of indices j for which the value of
the pair (u;,x;) is (a,b). For s,t € {0, 1}, define I, e
N(s, tlu™, x™), the vector (lo,0,0,1,11,0,/1,1) is called the
joint type of (u™,x™). For fixed x™ The set of sequences
Tioo.don oy = (W"IN(s, tlu™, x™) = L, st € {0, 1}},
is the set of vectors which have joint type (lo,0, l0,1, 1,0, 1,1)
with the sequence x™. Fix m,e > 0, and define L., £
{(l0,0, 10,15 11,0, 11,1) = |%” — Py x(s,1)| < €,Vs,t}. Then for
the conditional typical set AZ(U|x™) defined above we can
write

ANUX™) = U

(l0,0,10,1,11,0,11,1)€Len

Tlo,o,lo,l,ll,o,ll,l .

The type of x™, denoted by (lp, /1) is defined in a similar
manner. Since E;(X™) are chosen uniformly from the set
AZ(U|x™), we have:

_ Hu" lur=v,u™ € AZ(U|x™)}|
[l € A7 U]
. 2(10,0,10,1,11’0,l|,1)€£5,n Hu™uy = v, u™ € TIO,OJO,IJI,OJI,IH

Z(lo’o,lo,l,11’0,11’1)6[:5’” |{um|um € TIO,O:IO,IJI,OJII,I}I
Iy, —1 I;
Z(IO,OJO,Iall,Oall,l)ELe,n( o )( ! )

lu|,X|*1 lul,il
2 looslosh ol (IX' )(1}1 )
0.0:00.1:11,0..1)€Len Ny oy gy 5,
(L, —1)! Iz,
Z(IO,OJO,I:ll,OJI,l)E»Cs,n (g =Dy =Ly ) By oy "y —ly i)
- I,! Ig,!
Z(l(),(),l(“,11!0,l|,1)€£5,n [T A I A (e A I

Pg(Ei(X™) =v|X™ = x")
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1 1
(@ z(lo,o,lo,l,ll,o,ll,u)eﬁe,n Ly, Ty oy Wy —luy )V iy 2y Wy =y )

L, Z(IO,OJO,I:ll,O’II,I)E»Cs,n lul,xl!(lelfzul,xl)z zul,;lz(z;llfzul,;l)z

@ Py x(ui,x1) — €
Px(x1) +€

_ Py x(uy,x1) +e€
Px(x1) — €

=3m,e>0: |Ps(Ei(X™")=0|X" =x")— Pyx(ui|x1)| <0.

< Ps(Ei(X™) = o|X" = x™)

In (a), we use the fact that for fixed x™, (I, [5,) is fixed to
simplify the numerators. In (b) we have used that for jointly
typical e-sequences (u™,x™), I, x, € [n(Pyxui,x1) —
€),n(Py, x(uy, x1)+e)l,and Iy, € [n(Px(x1)—e), n(Px(x1)+
€)].

3) The encoder is insensitive to permutations. Due to
typicality encoding the probability that a vector x" is mapped
to y" depends only on their joint type and is equal to the
probability that 7 (x") is mapped to 7z (y"). O

G. Proof of Proposition 4

Proof.

Fix k, k' € N. Define the permutation 7;_ € S, as the
permutation which switches the kth and k’th elements and
fixes all other elements. Also, let € be the set of all mappings
e: {0, 1} — {0, 1}".

| 3 musy)=XmsEr( >

Pri>y

i N; <m,iFiy ecé i:Nj <m,iii|e
(
2 Z Ps (gﬂk—ﬂc/) 1 z Pk’i > 7le
ee Ny <m,i#ig
®)
= Z Ps (g) 1 Z P km_pi> 718
gel i:N; <m,iiy
=> ()| X Pl
geé LNy <m,l#m_ ik
= Ps Z Pri>vy |,

iV <m,i#iy
where in (a) we have used property 3) in Definition 8, and in
(b) we have defined g £ e, ., and used 7rk2_)k, =1.

K

|

H. Proof of Theorem 3

Proof.

From Proposition 4, it is enough to show the theorem holds
for k = 1. For ease of notation we drop the subscript k for
the rest of the proof and denote Py ; by P;. By the Markov
inequality, we have the following:

o Eg(P;
Ps( z Pi>y) < Z"N'Sm";éll 8 1).

(39)

i:V; <m,i#i;
So, we need to show that Zi:Nigm,i;&il Eg(P;) goes to O for
all fixed m. We first prove the following claim.
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Claim 1. Fix i, the following holds:

Ej x,Exnx, (E1Xi)) = Ex, (B2

% o, (E1XD) + 0(e7"),

Proof.
sy, By (EIXD)) = D P P@)(D P(x~)é(x"))>

Xi,e X~i

=D P)P@ Y. D Pl-)P(yi)ExMe(y")

Xj,€ Xi yyi=xi

=D PG&" D PODEZ(EGMEQR")
X" Y=

=D PG > PODEZ(EGCHEQG")
X Yyi=xi,y" € By (x")

+ > P(") > P(y-DEz(EG"EQL"))
xt y'yi=xi, y" € B (x")

Sy Y Pow
x" Vyi=xi, Y € By (x™)

+ > P(") > P(y-DEz(EG"EQL"))
x" Vyi=xi,y" € By (x")

= P(Y" € B,(X")IYi = X;)

+ > P(") > P(y-DEz(EG"EQL"))

xt yyi=xi, y" € B (x")
D o)+

D PG
X Y yi=xi,y" ¢ Bn(x")
< 0(e™™X) + P(Y" € B,(X")|Y; = Xi)

+D PE) Y, DL P PODEZHEG)EZEG™)

Py~)Ez(E")Ez(E(Y™)

Xei yhiyi=xi
= 0(e"™) + Ex, (B} y, . (E1X0).

In (a) we use the fact that £ < 1 by definition, in (b) follows
from property 1) in Definition 8. B O

Deﬁn_e E; = EE(Ei) = Egx, (EIXi) — > j<i Ej, and also
define P; £ Var(E;j). Using the above claim we have:

. . ES(P')
PS( z Pi > V) < Zl.N,fm,l;éll 1
i:V; <m,i#i; 7

_2"0ET) + Sinen Bs(P) — Es(P)
— y .
Using the arguments from the proof of Lemma 3, we can
see that the properties stated in that Proposition hold for Ej
as well. By the same results as in Lemma 3 and Corollary 1,

we have that Zie{o,l}” P = 131. Following the calculations
in (40):

Ps( > Pizy)
iZNiSm,i;éil
27" 0(e™") + Pipy<m Bs(P) — Es(By)
4
2" 0(e™"%) + Dico1y Es(P) — Es(B)

y

(40)
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B om O(e_"éx) + ES(Zie{O,l}” f_’l) — ES(Pil)
Y

m —ndx 2

2MO (e~ + Eyn (EE‘

(E(X")X™) ~ Eg(Py)

J— Xn
B y
2m0(e7"%) + Eg(Py) + O(e) — Eg(P)
- Y
_2"0(e7"%) 4 O(e)

l4
where in the last inequality we have used the second property
in Definition 8. The last line goes to 0 as n — oo. This
completes the proof. O]

1. Proof of Theorem 4

Proof. From Theorem 1, we have:
11
PIQ} -2 GiPIQ] < P(E(X") # F(Y")).
i

From Theorem 3 we have:

VmeN,y >0,Ps( > Pi<y) -1,

iV <m,i#i;
Ps( > Qi<yp)—> L (41)
iZNiSm,i;éil
Note that:
> Pi<y, > Qi<y=
i:Nj<m,i#i; i:Nj<m,i##i;
1 1 1 1
> CGPIQE > (1—26)(Pi, +7)2(Qi +7)2
i
+ (1 —2¢)"P2Q2, (42)

11
which converges to (1-2¢)P; izl+(1—2e)mP%Q% asy — 0.
Also Cj is decreasing in Nj and goes to 0 as N;j — co. Choose
y small enough and m large enough such that (1 — 2¢)(P;, +
11
7)2(Qi, +7)2 +(1-26)"P7Q? — (1-26)P] Q7 < 4. Then
Equations (41) and (42) gives

Pg (Pxnyn (E(X") # F(Y") <¢) — 0,

11
where ¢ = ZP%Q% —2(1 = 26)P:Q; — J. This is equivalent
to the statement of the theorem. O
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