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A General Framework for Temporal Fair User
Scheduling in NOMA Systems

Shahram Shahsavari , Farhad Shirani , and Elza Erkip

Abstract—Non-orthogonal multiple access (NOMA) is one of the
promising radio access techniques for next generation wireless net-
works. Opportunistic multi-user scheduling is necessary to fully
exploit multiplexing gains in NOMA systems, but compared with
traditional scheduling, inter-relations between users’ throughputs
induced by multi-user interference poses new challenges in the de-
sign of NOMA schedulers. A successful NOMA scheduler has to
carefully balance the following three objectives: Maximizing av-
erage system utility, satisfying desired fairness constraints among
the users and enabling real time, and low computational cost im-
plementations. In this paper, scheduling for NOMA systems under
temporal fairness constraints is considered. Temporal fair schedul-
ing leads to communication systems with predictable latency as op-
posed to utilitarian fair schedulers for which latency can be highly
variable. It is shown that under temporal fairness constraints, opti-
mal system utility is achieved using a class of opportunistic schedul-
ing schemes called threshold based strategies (TBS). One of the
challenges in heterogeneous NOMA scenarios—where only spe-
cific users may be activated simultaneously—is to determine the
set of feasible temporal shares. A variable elimination algorithm is
proposed to accomplish this task. Furthermore, an (online) itera-
tive algorithm based on the Robbins–Monro method is proposed
to construct a TBS by finding the optimal thresholds for a given
system utility metric. The algorithm does not require knowledge of
the users’ channel statistics. Rather, at each time slot, it has access
to the channel realizations in the previous time slots. Various nu-
merical simulations of practical scenarios are provided to illustrate
the effectiveness of the proposed NOMA scheduling in static and
mobile scenarios.

Index Terms—Non-orthogonal multiple access, multi-user
scheduling, temporal fairness, threshold-based strategies, Robbins-
Monro algorithm.

I. INTRODUCTION

NON-orthogonal multiple access (NOMA) has emerged as
one of the key enabling technologies for fifth generation

wireless networks [1]–[4]. In order to satisfy the ever-growing
demand for higher data rates in modern cellular systems, NOMA
proposes serving multiple users in the same resource block. This
is in contrast with conventional cellular systems which operate
based on orthogonal multiple access (OMA) techniques such as
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orthogonal frequency-division multiple access (OFDMA) [5]. In
OMA systems, each time-frequency resource block is assigned
to only one user in each cell, whereas, in NOMA systems, mul-
tiple users can be scheduled either in uplink (UL) or in downlink
(DL) simultaneously [6]. As a result, the scheduler in the NOMA
system may choose among a larger collection of users at each
resource block as compared to an OMA one, often leading to
a higher system throughput [7]. The high system throughput is
due to NOMA multiplexing gains, achieved through a combi-
nation of superposition encoding strategies at the transmitter(s)
and successive interference cancellation (SIC) decoding at the
receiver(s) [7]–[9]. However, the inter-relations between users’
throughputs induced by multi-user interference complicate the
design of high-performance schedulers, giving rise to new chal-
lenges both in terms of designing user power allocation schemes
[10]–[12] as well as optimal schedulers [2], [13]. Ideally, the
scheduler is designed in tandem with the encoding and decod-
ing strategies and power optimization techniques. However, due
to the complexity of the problem, scheduling is usually studied
in isolation assuming that the system throughputs are given to
the scheduler based on a predetermined communication strategy
[2], [14].

The objective of a NOMA scheduler is to maximize the system
utility (e.g. system throughput) subject to the users’ individual
demand constraints, e.g. temporal demands or minimum utility
demands. More precisely, at each resource block, the scheduler
estimates the set of resulting system utilities from activating any
specific subset of UL or DL users. It then chooses the set of active
users in that block based on this information and users’ individ-
ual fairness demands. Quantifying fairness in user scheduling
has been a topic of significant interest. Various criteria on the
users’ quality of service (QoS) have been proposed to model
and evaluate fairness of scheduling strategies. For OMA sys-
tems, scheduling under utilitarian [15], [16], proportional [17],
[18], and temporal [19], [20] fairness criteria have been studied.

In delay sensitive applications, a system with reasonable and
predictable latency may be more desirable than a system with
highly variable latency, but potentially higher throughput. In
such scenarios, temporally fair schedulers are often favored over
utilitarian fair schedulers. Temporally fair schedulers provide
each user with a minimum temporal share in order to control the
average delay [21]. Furthermore, most of the power consump-
tion in cellular devices is due to the radio electronics which are
activated during data transmission and reception. Consequently,
the maximum power drain of users can be restricted by consid-
ering upper-bounds on the users’ temporal shares [20]. From
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the perspective of the network provider, an additional upside of
temporally fair schedulers is that users with low channel quality
do not hinder network throughput as severely as in utilitarian fair
schedulers [22]. There has been a significant body of work dedi-
cated to the study of temporally fair schedulers in wireless local
area networks [23], [24] and OMA cellular systems [20], [25],
[26]. However, temporal fairness of NOMA schedulers, which
is the topic of this paper, has not been investigated before.

In OMA systems, optimal utility subject to temporal demand
constraints is achieved using a class of opportunistic schedul-
ing strategies called threshold based strategies (TBS) [19]. An
opportunistic scheduler exploits the time-varying nature of the
users’ wireless channels. In TBSs, at each resource block, the
active user ui is chosen based on the sum of two components:
i) Performance value Ri (typically transmission rate), and ii)
a constant term called the user threshold λi. The user thresh-
olds are chosen to optimize the tradeoff between system utility
and users’ temporal share demands. The thresholds can be inter-
preted as the Lagrangian multipliers corresponding to the fair-
ness constraints in the optimization of the system utility. In [19],
a method based on the Robbins-Monro algorithm is proposed to
construct optimal temporally fair TBSs for OMA systems.

In this work, we consider the user scheduling problem for
NOMA systems under temporal fairness constraints. We provide
a mathematical formulation of the problem which is applicable
under general utility models and assumptions on the subsets
of users which can be activated simultaneously. Our model is
applicable to both UL and DL scenarios.

We first address the question of feasibility of a set of tem-
poral demands in a given NOMA system. A vector of temporal
shares is said to be feasible if there exists a scheduling strat-
egy for which the resulting user temporal shares are equal to
the elements of the vector. In OMA systems, since exactly one
user is active at each block, a vector of temporal shares is fea-
sible as long as its elements sum to less than or equal to one.
However, in NOMA systems the set of feasible temporal shares
is not trivially known. Determining the feasible set is especially
challenging in large heterogeneous NOMA systems, where only
specific users may be activated simultaneously. In Section IV-A,
we propose a variable elimination method to derive the set of
feasible temporal shares in arbitrary heterogeneous NOMA sce-
narios. Furthermore, we prove that given a feasible set of tempo-
ral demands, TBSs are optimal for NOMA systems. We further
prove that any optimal scheduling strategy can be written in the
form of a TBS.

The question of existence and construction of optimal NOMA
TBSs is more challenging than OMA TBSs. The reason is that
a NOMA TBS assigns a threshold to each subset of users which
can be activated simultaneously, rather than each user sepa-
rately. Therefore, in an optimal TBS the thresholds assigned to
the subsets of users are inter-related. In Section V, we propose
a construction method based on the Robbins-Monro algorithm
to find the optimal thresholds for a NOMA TBS. The algorithm
does not require knowledge of the users’ channel statistics.
Rather, at each time-slot, it has access to the channel realizations
in the previous time-slots and updates the scheduler thresholds
iteratively to construct the optimal TBS. In Section VI, we

consider practical NOMA systems where discrete modulation
and coding strategies are used. In this case, the resulting system
utilities are staircase functions of the users’ signal to noise
ratios. As a result, the utility from activating different subsets
of users may lead to a tie in the TBS decision. This necessitates
the design and optimization of a tie-breaking decision rule [19].
We propose a perturbation technique which circumvents the
optimization and leads to TBSs whose average system utility
is arbitrarily close to the optimal utility. In Section VII, we
provide simulations and numerical examples in several practical
scenarios involving static and mobile settings. We observe that
the proposed scheduling algorithm adapts to the changes due to
user mobility under typical velocity assumptions.

II. NOTATION

We represent random variables by capital letters such asX,U .
Sets are denoted by calligraphic letters such as X ,U . The set
of natural numbers, and the real numbers are shown by N,
and R respectively. The set of numbers {1, 2, . . . , n}, n ∈ N
is represented by [n]. The closed interval {x : a ≤ x ≤ b} is
shown by [a, b]. The notation [a, b]n is used to denote the n-
fold Cartesian product of the closed interval [a, b] with itself.
The vector (x1, x2, . . . , xn) is written as xn. The m× t matrix
[gi,j ]i∈[m],j∈[t] is denoted by gm×t. For a random variable X ,
the corresponding probability space is (X ,FX , PX), where FX

is the underlying σ-field. The set of all subsets of X is written as
2X . For an eventA ∈ 2X , the random variable 1A is the indicator
function of the event. We write X ∼ Unif [a, b] for a random
variable X uniformly distributed on the interval [a, b]. Families
of sets are shown using sans-serif letters (e.g. X = 2X ). Finally,
modk(i), i, k ∈ N represents the value of i modulo k.

III. SYSTEM MODEL

In this section, we describe the system model and formu-
late NOMA multi-user scheduling under temporal fairness con-
straints. We consider a single-cell time-slotted system with n
users distributed within the cell. We define the user set as
U = {u1, u2, . . . , un} where ui, i ∈ [n] denotes the ith user. At
each time-slot, a subset of UL or DL users are activated si-
multaneously by the base station using NOMA. The maximum
number of active users at each time-slot is bounded from above
due to practical considerations such as latency and computa-
tional complexity at the scheduler and decoder. For example,
the decoding complexity, communication delay under SIC, and
the scheduler’s computational complexity are proportional to the
number of multiplexed users [1]. Consequently, only subsets of
users with at most Nmax ≤ n elements can be activated simulta-
neously, where Nmax is determined based on the communication
setup under consideration. Several works on NOMA scheduling
consider Nmax = 2 and Nmax = 3 under various utilitarian and
proportional fairness constraints [27], [28]. A subset of users
which can be activated simultaneously is called a virtual user.

Definition 1 (Virtual User): For a NOMA system with n
users and maximum number of active users Nmax ≤ n, the set
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of virtual users is defined as

V =
{Vj

∣
∣j ∈ [m]

}
=
{Vj ⊂ U ∣∣|Vj | ≤ Nmax

}
.

The setVj , j ∈ [m] is called the jth virtual user. The total number
of virtual users in a NOMA system is equal tom =

(
n
1

)
+
(
n
2

)
+

· · ·+ ( n
Nmax

)
.

Our objective is to design a scheduler which maximizes the
average network utility subject to temporal fairness constraints.
At the beginning of each time-slot, the scheduler finds the utility
due to activating each of the virtual users, and decides which
virtual user to activate in that time-slot. The utility is usually
defined as a function of the throughput of the elements of the
virtual user.

Definition 2 (Performance Vector): The vector of jointly
continuous variables (R1,t, R2,t, . . . , Rm,t), t ∈ N is the per-
formance vector of the virtual users at time t. The sequence
(R1,t, R2,t, . . . , Rm,t), t ∈ N is a sequence of independent1

vectors distributed identically according to the joint densityfRm .
Remark 1: It is assumed that the performance vector is

bounded with probability one. Alternatively, we assume that
P (Rm ∈ [−M,M ]m) = 1 for large enough M ∈ R≥0.

Remark 2: For the virtual user Vj = {ui1 , ui2 , . . . , uikj
},

j ∈ [m], kj ∈ [n], i1, i2, . . . , ikj
∈ [n], we sometimes write

Vi1,i2,...,ikj
(Ri1,i2,...,ikj

) instead of Vj (Rj) to represent the
virtual user (performance variable).

The following example clarifies the notion of perfor-
mance vector and provides a characterization for (R1,t, R2,t,
. . . , Rm,t), t ∈ N in a large class of practical applications.

NOMA Downlink Scenario: In this example, we explic-
itly characterize the performance vector of a NOMA downlink
system at any time-slot, where the system utility is defined to
be the transmission sum-rate. The characterization can also be
used for NOMA uplink scenarios with minor modifications (e.g.
[29]). Let hi,t be the propagation channel coefficient between
user ui and the BS which captures small-scale and large-scale
fading effects [30]. It is assumed that the channel coefficients
hi,t, i ∈ [n] are independent over time. Let Rj,t, j ∈ [m], t ∈ N
be the sum-rate of the elements of virtual user Vj given that it
is activated at time t. In NOMA downlink, a combination of
superposition coding at the BS and SIC decoding at the mo-
bile user has been proposed [31]. As envisioned for practical
NOMA downlink systems, the decoding occurs in the order of
increasing channel gains [7]. For a fixed virtual user Vj , j ∈ [m]
and user ui ∈ Vj , let Ii

j,t be the set of elements of Vj whose
channels are stronger than that of ui at time t. Alternatively, de-
fine Ii

j,t = {ul ∈ Vj

∣
∣|hl,t| > |hi,t|}. If Vj is activated at time t,

user ui applies SIC to cancel the interference from users in Vj

whose channel gain is lower than that of ui, hence only the sig-
nals from users in Ii

j,t are treated as noise and result in a lower
transmission rate for ui. It is well-known that in this scenario,
the decoding strategy is optimal since the users’ channels are
degraded [32], [33]. The interested reader is referred to [9] for a

1Note that the performance vector is assumed to be independent over time,
meaning that at any two distinct time-slots, the performance vectors are indepen-
dent of each other. However at a given time-slot the performance of the virtual
users may be dependent with each other.

detailed description of optimal decoding strategies in the down-
link scenario. The resulting signal to interference plus noise ratio
(SINR) of user ui is

SINRi
j,t =

P i
j,t|hi,t|2

|hi,t|2
∑

l∈Ii
j,t

P l
j,t + σ2

, i ∈ Vj , j ∈ [m], t ∈ N,

(1)

where, P i
j,t denotes the transmit power assigned to ui if virtual

user Vj is activated at time-slot t, and σ2 is the noise power. Let
Ri

j,t denote the rate of user ui if virtual user Vj is activated at
time-slot t, and let Rj,t be the resulting sum-rate. Then,

Ri
j,t = log2 (1 + SINRi,j,t) , i ∈ Vj , j ∈ [m], (2)

Rj,t =

n∑

i=1

Ri
j,t1{ui∈Vj}, j ∈ [m]. (3)

Temporal fair scheduling guarantees that each user is activated
for at least a predefined fraction of the time-slots. More precisely,
user ui, i ∈ [n] is activated for at least wi of the time, where
wi ∈ [0, 1]. Similarly, the scheduler guarantees that the users are
not activated more than a predefined fraction of the time-slots
which are given by the upper temporal share demands wn.

Definition 3 (Temporal Demand Vector): For an n user
NOMA system, the vector wn (wn) is called the lower (upper)
temporal demand vector.

The scheduler does not have access to the statistics of the
performance vector fRm . Rather, at time-slot t ∈ N, the sched-
uler takes (R1,k, R2,k, . . . , Rm,k), k ∈ [t], the realizations of
the performance vector in all time-slots up to time t and
outputs the virtual user which is to be activated in the next
time-slot. The NOMA scheduling setup is parametrized by
(n,Nmax, w

n, wn, fRm).
Definition 4 (Scheduling Strategy): A scheduling strategy

(scheduler)Q = (Qt)t∈N for the scheduling setup parametrized
by the tuple (n,Nmax, w

n, wn, fRm) is a family of (possibly
stochastic) functions Qt : Rm×t → V, t ∈ N, for which:
� The input toQt, t ∈ N is the matrix of performance vectors
Rm×t which consists of t independently and identically
distributed column vectors with distribution fRm .

� The temporal demand constraints are satisfied:

P
(
wi − ε ≤ AQ

i ≤ wi + ε, i ∈ [n]
)
= 1, ∀ε > 0, (4)

where, the temporal share of user ui, i ∈ [n] up to time t ∈ N
is defined as

AQ
i,t =

1

t

t∑

k=1

1{
ui∈Qk(Rm×k)

}, ∀i ∈ [n], t ∈ N, (5)

and the average temporal share of user ui, i ∈ [n] is

AQ
i = lim inf

t→∞ AQ
i,t, ∀i ∈ [n]. (6)

Note that analogous to Equation (6), one could define A
Q
i =

lim supt→∞ A
Q
i,t, ∀i ∈ [n] and modify Equation (4) accordingly.

However, as we will show in the next sections, for scheduling

strategies of interest, we have AQ
i = A

Q
i .
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Fig. 1. (a) Two-user NOMA system with three virtual users. (b) Weighted
Round Robin scheduling strategy when w1 = w2 = 0.6.

Remark 3: A scheduling setup where the temporal shares of
users are required to take a specific value, i.e. AQ

i = wi, i ∈ [n],
is called a scheduling setup with equality temporal constraints
and is parametrized by (n,Nmax, w

n, wn, fRm).
Definition 5 (System Utility): For a scheduling strategy Q:
� The average system utility up to time t, is defined as

UQ
t =

1

t

t∑

k=1

m∑

j=1

Rj,k1{
Qk(Rm×k)=Vj

}. (7)

� The average system utility is defined as

UQ = lim inf
t→∞ UQ

t . (8)

To further explain the notation, we provide an example of a
weighted round robin scheduling strategy in a two-user NOMA
scenario.

Example 1: Consider the downlink scenario shown in Fig-
ure 1. In this scenario n = 2, and U = {u1, u2}. Furthermore,
m = 3 and V = {V1,V2,V3}, where V1 = {u1},V2 = {u2},
and V3 = V1,2 = {u1, u2}. Let the fairness constraints be given
by the temporal weight demands w1 = w2 = 0.6 and w1 =
w2 = 1. This requires each user to be activated for at least 0.6
fraction of the time. One possible scheduling strategy in this
scenario is the Weighted Round Robin (WRR) strategy shown
in Figure 1(b). The strategy is described below:

Qt =

⎧
⎪⎪⎨

⎪⎪⎩

V1, if 0 ≤ mod10(t) ≤ 2,

V2, if 3 ≤ mod10(t) ≤ 5,

V1,2, if 6 ≤ mod10(t) ≤ 9.

(9)

The WRR strategy is a non-opportunistic strategy where vir-
tual users are chosen independently of the realization of the per-
formance vector. As a result, the temporal shareAQ

i,t, i ∈ [n], t ∈
N is a deterministic function of t. Note that AQ

i = 0.3 + 0.4 =
0.7, i = 1, 2; hence the WRR strategy satisfies the temporal de-
mand conditions (4). Also, it is straightforward to show that
the average network utility is UQ = 0.3E(R1) + 0.3E(R2) +
0.4E(R3).

The scheduler Q = (Qt)t∈N takes the matrix Rm×t of per-
formance values up to time t as input and outputs the virtual user
Vj , j ∈ [m] which is to be activated at time t. Temporal share
AQ

i,t, i ∈ [n], t ∈ N in (5) represents the fraction of time-slots in

which user ui is activated until time t. The variable AQ
i , i ∈ [n]

is an asymptotic lower bound to the temporal share of user ui

and (4) represents the temporal fairness constraints. Further-
more, UQ

t and UQ are the instantaneous and average system
utilities, respectively. The objective is to design a scheduling
strategy which achieves the maximum average network utility
while satisfying temporal fairness constraints.

Definition 6 (Optimal Strategy): For the scheduling setup
parametrized by (n,Nmax, w

n, wn, fRm), a strategy Q∗ is op-
timal if and only if

Q∗ ∈ argmax
Q∈Q

UQ, (10)

where Q is the set of all strategies for the scheduling setup.
The set Q includes strategies with memory as well as non-

stationary and stochastic strategies. As a result, the cardinality
of the set is large and the optimization problem described in
Equation (10) is not computable through exhaustive search.
However, in Section IV we show that this optimization prob-
lem can be expressed in a computable form by restricting the
search to a specific subset of stationary and memoryless strate-
gies called threshold based strategies. More precisely, we show
that any optimal strategy is equivalent to a threshold based strat-
egy where equivalence between strategies defined below

Definition 7 (Equivalence): For the scheduling setup
(n,Nmax, w

n, wn, fRm) two strategies Q and Q′ are called
equivalent (Q ∼ Q′) if:

lim
t→∞

1

t

t∑

k=1

P
(
Qk

(
Rm×k

)
= Q′

k

(
Rm×k

))
= 1.

Definition 8 (Stationary and Memoryless): A strategy Q =
(Qt)t∈N is called memoryless if Qt(R

m×t), t ∈ N is only a
function of the performance vector (R1,t, R2,t, . . . , Rm,t) cor-
responding to time t. For the memoryless strategy Q, we write
Qt(R

m) instead of Qt(R
m×t) when there is no ambiguity. A

memoryless strategy is called stationary if Qt(R
m) = Qt′(R

m)
for any t, t′ ∈ N.

Lemma 1: For a memoryless and stationary strategy Q, the
following limits exist:

AQ
i = lim

t→∞AQ
i,t, UQ = lim

t→∞UQ
t . (11)

The proof is provided in the Appendix.
Definition 9 (TBS): For the scheduling setup (n,Nmax, w

n,
wn, fRm) a threshold based strategy (TBS) is characterized by
the vector λn ∈ Rn. The strategyQTBS(λ

n) = (QTBS,t)t∈N is
defined as:

QTBS,t

(
Rm×t

)
= argmax

Vj∈V
S
(Vj , Rj,t

)
, t ∈ N, (12)

where S
(Vj , Rj,t

)
= Rj,t +

∑n
i=1 λi1{ui∈Vj} is the ‘schedul-

ing measure’ corresponding to the virtual user Vj . The resulting
temporal shares are represented as wi = AQTBS

i , i ∈ [n]. The
utility of the TBS is written as Uwn(λn). The space of all thresh-
old based strategies is denoted by QTBS .

We note that threshold based strategies are stationary and
memoryless. The reason is that the output of QTBS,t, t ∈ N in
(12) depends only on the threshold vector λn and the realization
of Rm at time t.
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Example 2: Consider the NOMA system described in
Example 1. A TBS with threshold vector λ2 = (λ1, λ2) has the
following scheduling measures:

S
(V1, R1,t

)
= R1,t + λ1,

S
(V2, R2,t

)
= R2,t + λ2,

S
(V1,2, R1,2,t

)
= R1,2,t + λ1 + λ2.

The virtual user with the highest scheduling measure is chosen
at each time-slot. Note that the probability of a tie among the
scheduling measures is 0 since the performance vector Rm is
assumed to be jointly continuous.

IV. EXISTENCE OF OPTIMAL THRESHOLD BASED STRATEGIES

In this section, we show that for any scheduling problem with
temporal fairness constraints, optimal utility can be achieved us-
ing a threshold based scheduling strategy. Therefore, in consid-
ering the optimization problem described in Equation (10), the
set of strategies Q can be restricted to the set of threshold based
strategies. Furthermore, we show that any scheduling strategy
which achieves optimal utility is equivalent to a threshold based
strategy, where equivalence between strategies is defined in
Definition 7.

A. Optimal Temporally Fair NOMA Scheduling

Theorem 1: For the NOMA scheduling setup (n,Nmax, w
n,

wn, fRm), assume that Q �= ∅. Then, there exists an optimal
threshold based strategy QTBS . Furthermore, for any optimal
strategy Q, there exists a threshold based strategy Q′ such that
Q ∼ Q′.

The condition Q �= ∅ in Theorem 1 is called the feasibility
condition and is investigated in Section IV-B. The proof of the
theorem follows form the following steps:
� Under equality temporal demand constraints where wn =
wn = wn, existence of optimal TBSs follows from a gen-
eralization of the intermediate value theorem called the
Poincaré-Miranda Theorem [34].

� The uniqueness of an optimal strategy up to equivalence
follows from a variant of the dual (Lagrangian multiplier)
optimization method.

� Under inequality temporal demand constraints, the proof
of existence follows by discretizing the feasible space and
solving the optimization for each point on the discretized
space under equality constraints.

The complete proof of Theorem 1 is provided in the Appendix.
The following corollaries follow from the proof.

Corollary 1: Consider the NOMA scheduling setup under
equality temporal demand constraints (n,Nmax, w

n, wn, fRm),
where Q �= ∅. There exists a unique TBS QTBS satisfying
the temporal demand constraints and this TBS is the optimal
scheduling strategy for this setup.

The following corollary states that the search for the optimal
strategy in Equation (10) may be restricted to the set of TBSs.

Corollary 2: For the scheduling setup (n,Nmax, w
n,

wn, fRm), the optimal achievable utility is given by:

U ∗
wn,wn � max

λn:wi≤A
QTBS
i ≤wi

Uwn(λn), (13)

where Uwn(λn) is defined in Definition 9.
As a consequence of Theorem 1, under equality temporal de-

mand constraints, the optimal achievable utility is equal to the
utility of the unique TBS satisfying the temporal demand con-
straints (i.e. U ∗

wn,wn = Uwn(λn)). The reason is that the thresh-
old based strategy achieves optimal utility among all strategies
with temporal shares equal to wn.

The following Corollary is used in Section VII to provide a
low complexity algorithm for constructing optimal TBSs.

Corollary 3: For the NOMA scheduling setup (n,Nmax,
wn, wn, fRm), assume that there exist positive thresh-
olds λ1, λ2, . . . , λn satisfying the complimentary slackness
conditions:

λi

(
AQTBS

i − wi

)
= 0, ∀i ∈ [n],

wi ≤ AQTBS

i ≤ wi, ∀i ∈ [n],

where QTBS is the TBS corresponding to the threshold vector
λn. Then, QTBS is an optimal scheduling strategy.

Note that the complementary slackness conditions in Corol-
lary 3 are written only in terms of the lower temporal demands.
Similar sufficient conditions can be derived in terms of the upper
temporal share demands.

Remark 4: If Q∼Q′, then the two scheduling strategies ac-
tivate the same subsets of users in almost all time-slots. As a
result, the two strategies have the same performance under any
long-term fairness and utility criteria. LetQ∗ be the set of all op-
timality achieving strategies under temporal demand constraints.
A consequence of Theorem 1 is that all of the strategies in Q∗

have the same performance with each other under any additional
utility or fairness criteria.

B. Feasible Temporal Share Region

Section IV-A affirms the existence of a TBS that achieves the
optimal average system utility given that the temporal demands
are feasible. However, some values of (wn, wn), are not achiev-
able by any scheduling strategy. In other words, the set Q is
empty for certain pairs of constraint vectors (wn, wn). In this
section, we provide a variable elimination method which allows
us to characterize the feasible region for a given scheduling setup
as a function of its temporal demand vectors.

Definition 10: A scheduling setup (n,Nmax, w
n, wn, fRm)

is called feasible if Q �= ∅. The set of temporal shares wn for
which the setup is feasible under equality constraints is called
the feasible region and is denoted by W .

The following theorem characterizes the set of all feasible
scheduling setups.

Theorem 2: A scheduling setup with equality temporal con-
straints (n,Nmax, w

n, wn, fRm) is feasible if and only if there
exist a set of non-negative values {aj : j ∈ [m]} satisfying the
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following bounds:
∑

j∈[m]

aj = 1,
∑

j:ui∈Vj

aj = wi, ∀i ∈ [n], 0 ≤ aj , ∀j ∈ [m].

(14)

Furthermore, the scheduling setup with inequality temporal con-
straints (n,Nmax, w

n, wn, fRm) is feasible if and only if there
exist a set of non-negative numbers {wi : i ∈ [n]}. Such that i)
(n,Nmax, w

n, wn, fRm) is feasible, and ii) the following bounds
are satisfied:

∀i ∈ [n] : wi ≤ wi ≤ wi.

Proof Sketch: In order to prove that Q �= ∅ under equal-
ity constraints, we use a WRR scheduler in which the weight
assigned to Vj is equal to aj . Under inequality temporal con-
straints, in order to have Q �= ∅, it suffices that there is a vector
of temporal shares in the feasible region which satisfies the in-
equality constraints. On the other hand, if the scheduling setup
is feasible (i.e. Q �= ∅), then a WRR strategy exists which sat-
isfies the temporal demand constraints. Taking aj to be equal
to the temporal weight assigned to Vj , it is straightforward to
verify that Equations in (14) hold. �

The feasibility conditions in Theorem 2 are written in terms
of auxiliary variables aj , j ∈ [m] which can be interpreted as
the temporal shares of the virtual users. However, it is often
desirable to write the feasibility conditions in terms of the tem-
poral share vector wn. The conditions can be re-written in the
desired form using the Fourier-Motzkin elimination (FME) al-
gorithm. The standard FME algorithm has worst case computa-
tional complexity of order O(m2m−n−1

) [35]. In [36], a method
for variable elimination was proposed which has a significantly
lower computation complexity. The method leads to the follow-
ing algorithm for determining the feasible region:

Step 1: Eliminate ai, i ≤ n+ 1 using the equality constraints
(14):

ai = wi −
∑

j:ui∈Vj

aj , i ∈ [n], an+1 = 1−
∑

j∈[m],j �=n+1

aj .

That is, replace ai, i ≤ n+ 1 in all inequality constraints (14)
by the right hand sides in the above equations.

Step 2: Define cl,j , l ∈ [m], 1 ≤ j ≤ n as the coefficient ofwj

in the lth inequality after Step 1. Also, define cl,j , l ∈ [m], n+
2 ≤ j ≤ m as the coefficient ofaj in the lth inequality. Construct
the dual system of equations:
∑

l∈[m]

cl,jxl = 0, xl ∈ N ∪ {0}, j ∈ {n+ 2, n+ 3, . . . ,m}.

Step 3: Use the Normaliz algorithm [37] to find the Hilbert
basis for the solution space of the dual system. Let B =
{bm1 .bm2 , . . . , bmk } be the Hilbert basis, where k is the number of
Hilbert basis elements.

Step 4: Let bmi = (bi,1, bi,2, . . . , bi,m), i ∈ [k]. The following
system of inequalities gives the feasible region:

0 ≤
∑

l∈[n+1]

∑

j∈[n]
bi,lcj,lwj , i ∈ [k]. (15)

Fig. 2. The colored region shows the set of feasible weight vectors for the
three user NOMA problem with Nmax = 2.

The elimination process is explained in the following
example.

Example 3: Consider a three user downlink NOMA sce-
nario with Nmax = 2. The scheduling setup is feasible if
there exists a vector of virtual user temporal weights
(a1, a2, a3, a1,2, a1,3, a2,3) such that:

0 ≤ a1, 0 ≤ a2, 0 ≤ a3, 0 ≤ a1,2, 0 ≤ a1,3, 0 ≤ a2,3

a1 + a2 + a3 + a1,2 + a1,3 + a2,3 = 1,

a1 + a1,2 + a1,3 = w1, a2 + a1,2 + a2,3 = w2,

a3 + a1,3 + a2,3 = w3.

Using the equality constraints, one could write a1, a2, a3 and
a1,2 as functions of w1, w2, w3, a1,3 and a2,3. We get:

0 ≤ 1 + a1,3 − w1 − w3, 0 ≤ 1 + a2,3 − w2 − w3,

a1,3 + a2,3 ≤ min(w3, w1 + w2 + w3 − 1),

0 ≤ a1,3, 0 ≤ a2,3.

There are a total of five inequalities, i.e. k = 5. The dual system
is given by:

x1 − x3 + x4 = 0, x2 − x3 + x5 = 0.

The Hilbert basis is B = {(1, 1, 1, 0, 0), (0, 0, 1, 1, 1), (0, 1, 1,
1, 0), (1, 0, 1, 0, 1)}. From Equation (15), the feasible region is
as follows:

0 ≤ wi ≤ 1, i ∈ [3], 1 ≤ w1 + w2 + w3 ≤ 2.

The region is shown in Figure 2.The figure can be interpreted
as follows: the sum of the temporal shares of all users cannot
exceed two since no more than two users can be activated at each
time-slot. Furthermore, the sum cannot be lower than one since
at least one user is activated at each time-slot.

The problem of determining the feasible region is more com-
plicated for large non-homogeneous NOMA systems where spe-
cific subsets of users cannot be activated simultaneously due
to practical considerations. In such instances the elimination
method proposed in this section can be a valuable tool in deter-
mining the feasible region.
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V. CONSTRUCTION OF OPTIMAL SCHEDULING STRATEGIES

In the previous section, it was shown that for any feasible
scheduling problem, optimal utility is achieved using TBSs. In
this section, we address the construction of optimal scheduling
strategies and provide an iterative method which builds upon
the Robbins-Monro algorithm [38] to find optimal thresholds
for TBSs. Note that the scheduler does not have access to the
statistics of the performance vector. The algorithm proposed in
this section uses the empirical observations of the realizations of
the performance vector to find the optimal thresholds iteratively.

A. The Robbins-Monro Algorithm

The Robbins-Monro algorithm [38] is a method for finding
the roots of the univariate function f : R → R based on a lim-
ited number of noisy samples of f(x), x ∈ R. More precisely,
assume that we take l noisy samples gt = f(xt) + εt of the func-
tion f(·) at xt, t ∈ [l], , where the random variable εt is the sam-
pling noise at time t and l is a fixed natural number.

The objective is to approximate the solution of f(x) = 0
by choosing xt, t ∈ [l] suitably such that the approximation
converges to the root as l → ∞. The algorithm was extended
to find roots of multi-variate functions by Ruppert [39]. Let
f : Rn → Rn be a mapping of the n-dimensional Euclidean
space onto itself. Let gt = f(xn

t ) + εnt be the noisy sample of
f(xn

t ) at xn
t , t ∈ [l], and the step-size sequence (st)t∈N be a

sequence of positive real numbers. It can be shown that se-
quence xn

t+1 = xn
t − stg

n
t converges to the solution of the sys-

tem f(xn) = 0 if the following conditions hold:
1) Solvability: The function f(·) has a root x∗n.
2) Local Monotonicity: (xn − x∗n)T f(xn) > 0 for xn �=

x∗n.
3) Zero-mean and i.i.d. noise: εnt , t ∈ N is an i.i.d. sequence

and E(εnt ) = 0.
4) Step-size constraints: st > 0, limt→∞ st = 0,

∑∞
t=1 st =

∞,
∑∞

t=1 s
2
t < ∞.

B. Finding Thresholds under Equality Constraints

In Corollary 1, we showed that any threshold based strategy
satisfying the equality temporal constraints is optimal. As a re-
sult, the objective of finding the optimal scheduling strategy is
reduced to finding the thresholds which lead to a TBS satisfy-
ing the temporal demand constraints. More precisely, we are
interested in finding the threshold vector λn such that

A
QTBS(λn)
i = wi, i ∈ [n]. (16)

Hence, finding the optimal TBS is equivalent to solving the
non-linear system of equations in (16). Next, we show that the
empirical observation of the realizations of Rm at the BS is
sufficient to find the optimal thresholds using the multi-variate
version of the Robbins-Monro stochastic approximation method
[39].

In the scheduling problem, consider fi(λ
n) = AQ

i (λ
n)−

wi, i ∈ [n]. We are interested in finding the root of the
function f(·) provided that the root exists (i.e. Q �= ∅). In
Theorem 3, we show that conditions (1)-(4) provided above are

satisfied for a suitable step-size sequence. Note that AQ
i (λ

n)
depends on the statistics of the performance vector Rm and
is not explicitly available in practice. Assume that at time
t, the scheduler uses the threshold vector λn

t . Then, it ob-
serves gt,i � 1{ui ∈ Qt(λ

n
t )} − wi which is a noisy sample of

f(λn
t ) = AQ

i (λ
n
t )− wi. The sampling noise is εt,i = gt,i(λ

n
t )−

fi(λ
n
t ) = 1{ui ∈ Qt(λ

n
t )} −AQ

i (λ
n
t ). The sequence of sam-

pling noise vectors εnt , t ∈ N is an i.i.d. sequence since Qt(λ
n
t )

depends only on the realization of Rm at time t which are as-
sumed to be i.i.d. over time. Furthermore, it is straightforward
to show that E(εt,i) = 0. Therefore, conditions (1) and (3) are
satisfied. The following theorem shows that conditions (2) and
(4) hold for Nmax > 1.

Theorem 3: Let fi(λ
n) = AQ

i (λ
n)− wi, i ∈ [n]. The con-

vergence conditions (1)–(4) in the multi-variate Robbins-Monro
algorithm are satisfied for step-size the sequence st = 1

t , t ∈ N.
The proof is provided in the Appendix.

C. Finding Thresholds Under General Temporal Constraints

In this section, we provide an algorithm for finding the opti-
mal TBS thresholds under general temporal demand constraints
(Algorithm 1). The optimization algorithm uses a combination
of the gradient projection method [40] and the Robbins-Monro
algorithm described in the previous section. The algorithm lever-
ages the concavity of U ∗

wn,wn shown in Lemma 2 and applies
gradient projection to ensure that the solution converges to an
optimal threshold vector within the feasible space. Furthermore,
we build upon Algorithm 1 to propose a low-complexity heuris-
tic algorithm (Algorithm 2) which is used in Section VII for
simulations.

Lemma 2: The optimal achievable utility U ∗
wn,wn is jointly

concave as a function of (wn, wn).
The proof is provided in the Appendix. As a consequence

of Lemma 2, the optimization in (13) can be performed using
standard gradient projection methods [40]. Note that the gradient
projection method requires prior knowledge of the feasible set
which is characterized using the method in Section IV-B.

Algorithm 1 performs an iterative two-step optimization. At
each iteration, in the first step, given a fixed temporal demand
vector wn, the Robbins-Monro algorithm is used to find the
thresholds under equality temporal constraints. Next, the gradi-
ent projection method is used to update the weight vector wn

based on∇Uwn,wn . The algorithm converges to the optimal util-
ity due to the concavity of U ∗

wn,wn . The iteration stops if Δ ≥ ε,
where Δ represents the variation in wn at each step and ε is
the stopping parameter. It can be noted that the choice of the
initial demand vector wn

0 does not affect the convergence of the
proposed method since U ∗

wn,wn is jointly concave as shown in
Lemma 2.

Algorithm 1 requires estimating the gradient ofU ∗
wn,wn which

entails high computational complexity. To elaborate, in order to
use the gradient projection method, the scheduler needs to know
∇U ∗

wn,wn . However, the scheduler does not know the statistics
of the performance vector. As a result, it must estimate∇U ∗

wn,wn

using a gradient estimation method based on the empirical obser-
vations of the performance vector. As an alternative, we propose
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Algorithm 1: Two-stage Threshold Optimization in TBS.
1: Obtain feasibility region W (Section IV-B).
2: Set ε > 0 and Δ = 2ε.
3: Choose initial demand vector wn = wn

0 .
4: while Δ ≥ ε do
5: Find U ∗

wn,wn and corresponding λn (Robbins-Monro
Algorithm in Section V-B).

6: Update wn based on ∇U ∗
wn,wn (gradient projection

step).
7: Δ = ||wn

new − wn||
8: end while

Algorithm 2: Heuristic Threshold Optimization in TBS.

Initialization: λ1,i = 0, i ∈ [n]
1: for t ∈ N do
2: Vt = Qt(λ

n
t )

3: AQ
t+1,i = AQ

t,i +
1

t+1

(
1{i ∈ Vt} −AQ

t,i

)

4: λmin = mini∈[n] λt,i

5: λt+1,i =

λt,i − s
(
λt,i − λmin

)(
1{ui ∈ Vt} − wi

)
, i ∈ [n]

6: for i = 1 to n do
7: if λt,i = λmin and AQ

t+1,i < wi then

8: λt+1,i = λt,i + s
(
wi −AQ

t+1,i

)

9: end if
10: if λt,i = λmin and λmin < 0 then
11: λt+1,i = λt,i + s
12: end if
13: end for
14: end for

Algorithm 2 which is a low complexity heuristic variation of
Algorithm 1. The algorithm is constructed using the comple-
mentary slackness conditions provided in Corollary 3. Algo-
rithm 2 replaces gradient projection in Algorithm 1 by a simple
perturbation step.

Algorithm 2 starts with a vector of initial thresholds. At time-
slot t, it chooses virtual user Vt to be activated based on the
threshold vector λn

t . It updates the temporal shares and thresh-
olds based on the scheduling decision at the end of the time-slot
(line 2–5). The update rule for the thresholds given in line 5 is a
variation of the Robbins-Monro update described in Section V.
The parameter s is the step-size. Lines (6–13) replace the gradi-
ent projection step in Algorithm 1 and verify that the temporal
demand constraints and dual feasibility conditions are satisfied.
The computational complexity of the algorithm grows polyno-
mially in the number of users. For instance, when Nmax = 2, the
computational complexity at each time-slot is proportional to
the number of virtual users and is O(n2).

VI. DISCRETE AND MIXED PERFORMANCE VARIABLES

So far, we have assumed that the performance vector Rm

is jointly continuous. The proofs provided for Theorems 1 and
3 rely on the joint continuity assumption. However, in practi-
cal scenarios, the performance vector is a vector of discrete or

Fig. 3. Empirical CDF of performance value of virtual user V1,2 in two user
NOMA.

mixed random variables. For instance, in cellular systems, the
performance vector is discrete due to discrete modulation and
coding schemes.

The performance value of a virtual user is a function of the
SINR of its elements. For instance, in Section III, sum-rate in
the NOMA downlink scenario was considered as the perfor-
mance metric which is a logarithmic function of the SINRs.
Since the logarithm function is continuous, the performance vec-
tor is a jointly continuous vector of random variables. However,
in practical scenarios, the function which relates the SINR to
the performance value is neither injective nor continuous. The
function is determined by the choice of the modulation and cod-
ing schemes at each time-slot. Moreover, in some applications,
the performance value is approximated by a truncated Shan-
non rate function, i.e. R = min{log2(1 + SINR), γmax}, where
γmax is the maximum data rate supported by the system. In this
case, the performance value has a mixed distribution function.
Figure 3 shows the empirical CDF of the performance value
of virtual user V1,2 in the downlink of a two user NOMA sys-
tem with SIC, where the performance value is taken as i) the
Shannon sum-rate for NOMA downlink scenario as described in
Section III, ii) truncated Shannon sum-rate, and iii) sum-rate
with LTE modulation and coding schemes. In the truncated
Shannon sum-rate model we use γmax = 4 bps/Hz and in the
LTE rate model we use the parameters in [41, Table 7.2.3-1],
where 15 combinations of modulation and coding schemes are
used.

The analysis provided in the previous sections cannot be ap-
plied directly to mixed and discrete performance vectors. The
reason is that when the performance values are jointly continu-
ous, the probability of having a tie among the scheduling mea-
sures in a TBS is zero. However, there may be more than one
virtual user with the highest scheduling measure in the case of
a mixed or discrete performance vector. In such scenarios, there
is a need for a tie-breaking rule which affects the optimality
of the scheduler. One widely used solution in OMA scheduling
is to use a stochastic tie-breaker where in the event of a tie, one of
the users is activated randomly based on a given probability dis-
tribution called the tie-breaking probability [19]. This requires
a joint optimization of the thresholds and the tie-breaking rule.
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We propose a new class of scheduling strategies called �-
perturbed TBSs to handle mixed and discrete random variables.
An �-perturbed TBS is a variation of TBSs where the scheduling
measure takes a perturbation of the performance vector as its in-
put. To elaborate, fix � ∈ N. Define R̃j,t(�) = Rj,t +Nj,t,1/�,
j ∈ [m] where Nj,t,1/� ∼ Unif [−1/�, 1/�] and the variables
Nj,t,1/� are jointly independent. It is straightforward to show
that (Rj,t(�))j∈[m] is a jointly continuous vector of random
variables. Let Q be a TBS characterized by the threshold vec-
tor λn. At time-slot t, the �-perturbed TBS Q1/� activates

VJ,t = Q1/�(R
m×t) = Q(R̃m×t), where J is the random vari-

able corresponding to the index of the activated virtual user. The
resulting utility is equal to RJ,t. The class of perturbed TBSs
are formally defined below.

Definition 11 (Discrete Scheduling Setup): A discrete
scheduling setup is characterized by (n,Nmax, w

n, wn, Rm),
where Rm may be a discrete or mixed vector of random vari-
ables.

Definition 12 (�-PTBS): For the scheduling setup (n,Nmax,
wn, wn, Rm) an �-perturbed threshold based strategy (�-
PTBS) is characterized by the vector λn ∈ Rn. The strategy
Q1/�(λ

n) = (Q1/�,t)t∈N is defined as:

Q1/�,t

(
Rm×t

)
= argmax

Vj∈V
S�

(Vj , R̃j,t

)
, t ∈ N, (17)

where R̃j,t(�) = Rj,t +Nj,t,1/� are the perturbed performance
values andNj,t,1/� ∼ Unif [−1/�, 1/�] are jointly independent.

The following theorem shows that the average system utility
for the designed �-PTBS approaches the optimal utility of the
original system as � → ∞. However, it should be noted that the
precision supported by the scheduler’s equipment sets an upper
limit on �.

Theorem 4: Let Q∗ be the optimal scheduling strategy
for the setup Ω0 = (n,Nmax, w

n, wn, Rm). Let Q∗
1/� be the

optimal TBS for the setup Ω1/� = (n,Nmax, w
n, wn, f

˜Rm),

where R̃m = Rm +Nm
1/� and Nm

1/� is a vector of independent

Unif [−1/�, 1/�] variables. Let Q̂1/� be the �-PTBS character-
ized by the same threshold vector as Q∗

1/�. Define U ∗ and U1/�

as the average system utility due to Q∗ and Q̂1/� when applied
to system Ω0, respectively. Then,

lim
�→∞

(U ∗ − U1/�) = 0,

where convergence is in probability. Alternatively, the utility of
Q̂1/� applied to Ω0 converges to the optimal utility as � → ∞.

The proof is provided in Appendix E.

VII. NUMERICAL RESULTS AND SIMULATIONS

In this section, we provide various numerical examples and
simulations to evaluate the performance of the approaches pro-
posed in Sections V and VI. We simulate the DL of a small-cell
NOMA system consisting of a BS and a number of users dis-
tributed uniformly at random in a ring around the BS with inner
and outer radii of 20 m and 100 m, respectively. Two user mobil-
ity models are considered in the simulations. In the first model,
the users are assumed to be static, whereas the second model

TABLE I
SIMULATION PARAMETERS

uses a two-dimensional random walk. Table I lists the network
parameters. We consider Nmax = 2, i.e. an individual user or a
pair of users is scheduled at each time-slot. We assume that there
are no upper temporal demand constraints. The user SINRs are
modeled as described in Equation (1) and the network utility
is assumed to be truncated Shannon sum-rate unless otherwise
stated. At each time-slot prior to scheduling, a max-min power
optimization is performed for each virtual user [11]. For a given
virtual user, we find the transmit power which maximizes the
minimum individual user rates in that virtual user. This max-min
optimization allows for a balanced rate allocation within the vir-
tual user. It can be shown that the max-min optimization is quasi-
concave. Consequently, quasi-concave programming methods
such as bisection search can be used to find the optimal transmit
powers [11]. Maximum BS transmit power constraint is chosen
such that the average SNR of 10 dB is achievable when a single
user is active on the boundary of the cell. We use Algorithm 2
described in Section V for simulations. The step-size s is taken
to be 0.001.

A. Performance Evaluation

We evaluate the performance of the NOMA scheduler in a sce-
nario where the users are static. As a benchmark, we consider an
OMA system where a single user is activated at each time-slot.
To find a temporal fair scheduler in an OMA system, we consider
the setup when Nmax = 1. We also consider Round Robin (RR)
scheduling as another benchmark. Figure 4 shows the empirical
cumulative distribution function (CDF) of the network through-
put in a network with n = 5 users and wi = 0.2, ∀i ∈ [5] for
various scheduling strategies. We observe that there are signif-
icant improvements in terms of network throughput when the
TBS (labeled opportunistic NOMA) is used compared to OMA
(labeled opportunistic OMA) as expected. Furthermore, we note
that RR scheduling in NOMA leads to a significant performance
loss. The RR strategy chooses the virtual user regardless of the
performance in that time-slot. As a result, the strategy is par-
ticularly inefficient in NOMA systems. The reason is that SIC
which is used in NOMA may have a poor performance for a
given virtual user in some time-slots.

Table II lists the percentage of the average throughput gain
when using opportunistic NOMA scheduler compared to an
opportunistic OMA scheduler. For a given number of users
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Fig. 4. Empirical CDF of network throughput for NOMA and OMA systems
using different scheduling schemes when the users are static.

TABLE II
AVERAGE THROUGHPUT GAIN OF OPPORTUNISTIC NOMA SCHEDULING

OVER OPPORTUNISTIC OMA SCHEDULING

n ∈ {2, 3, . . . , 6}, we simulated 100 independent realizations
of the network. It can be observed that increasing the number of
users boosts the NOMA performance gain. This is due to the fact
that the number of virtual users increases as n becomes larger.
As a result, the NOMA scheduler has more options in the choice
of the active virtual user.

B. Convergence

In this section, we investigate the evolution of the scheduling
thresholds when running Algorithm 2. We consider a scenario
with n = 5 users and w5 = [0.1, 0.1, 0.4, 0.3, 0.1]. We assume
that the users are static. Figure 5(a) shows the long-term user
temporal shares Ai

Q, t ∈ [5] and the user thresholds. It can be
seen that the temporal demand constraints are satisfied. Also, the
thresholds satisfy the optimality conditions discussed in Corol-
lary 3. Figure 5(b) shows the evolution of the thresholds in dif-
ferent iterations of Algorithm 2.

In Figure 6, we consider the previous scenario with mobile
users. We model the mobility of the users by a two-dimensional
random walk where each user takes one step per time-slot in
a direction θ uniformly distributed in [0, 2π]. Furthermore, we
assume that the speed of the user at each step is randomly dis-
tributed between 1 m/s and 10 m/s. It is also assumed that the
users do not exit the cell. In this scenario, the performance vector
Rm is not stationary andAQ

i (λ
n) is time-varying. Therefore, the

optimal thresholds change over time. Figure 6(a) shows the long-
term temporal share of the users and the evolution of the thresh-
olds in time. It can be seen that the thresholds track the variation
of the system and the desired temporal demand constraints are
satisfied. Figure 6(b) shows the evolution of the users’ thresh-
olds as the iterative algorithm proceeds. It can be observed that

Fig. 5. (a) Long-term temporal share and the lower temporal demands of the
static users. (b) The evolution of scheduling thresholds in Algorithm 2. The
horizontal axis is the sampled time-slot index, where the sampling parameter H
is set to 0.1.

the thresholds for users 1, 2, 4 and 5 are close to zero throughout
the iterative process, whereas the threshold for user 3 increases
to approximately 4 bps/Hz in a small fraction of the time-slots
and fluctuates in the vicinity of 4 bps/Hz afterwards.

C. Discrete Performance Vectors

In this section, we consider a NOMA scenario with two users
and discrete performance variables and discuss the effectiveness
of the method described in Section VI. Due to the small number
of virtual users in this scenario, we are able to find the optimal
thresholds and tie-breaking decision analytically. We also use the
perturbation method in Section VI to construct an �-PTBS and
compare the resulting performance with the optimal utility. It is
shown that the utility from the method proposed in Section VI
converges to the optimum utility as � → ∞. Consider a two-user
scenario where the performance values are independent discrete
random variables distributed as follows:

R1 =

{
0.1 w.p. 0.5

0.2 w.p. 0.5
, R2 =

{
0.2 w.p. 0.5

0.3 w.p. 0.5
,

R1,2 =

{
0.1 w.p. 0.75

0.4 w.p. 0.25
.
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Fig. 6. (a) Long-term temporal share of the users in a mobile scenario.
(b) The evolution of scheduling thresholds in time. The sampling parameterH is
set to 0.1.

TABLE III
OPTIMAL TBS WITH DISCRETE PERFORMANCE VALUES

Letw1 = 0.5,w2 = 0.25. We first find the optimal thresholds
and tie-breaking probability distributions analytically assuming
that the channel statistics are known. For λ1 = λ2 = 0, we have
AQ

1 ≤ 7
16 . Therefore, λ1 must be positive in order to satisfy

the temporal demand of user u1. Take λ1 to 0.1, Table III lists
all of the possible values for the scheduling measures vector
S3 and the choice of the active user. Note that a tie happens
when R3 = (0.1, 0.2, 0.1) and R3 = (0.2, 0.3, 0.1). In the for-
mer, the tie happens among all three virtual users whereas in
the latter, the tie is between V1 and V2. Let p3 = (p1, p2, p1,2)
denote the tie-breaking distribution. It can be shown that an op-
timum tie-breaking distribution is p3 = ( 13 ,

2
3 , 0) when R3 =

(0.1, 0.2, 0.1) and p3 = (0, 1, 0) when R3 = (0.2, 0.3, 0.1) by
checking the sufficient conditions in Corollary 3. This gives

Fig. 7. Average system utility for the optimal strategy (tiled red) and the pro-
posed method (filled green). The parameter � determines the variance of the per-
turbation noise which affects the discrete utility vector in the proposed method.

AQ
1 = 0.5 and AQ

2 = 0.75 which satisfy the optimality con-
straints described in Corollary 3. As a result, the optimal average
system utility is 45

160 ≈ 0.281. To evaluate the method proposed
in Section VI, we add a vector of independent random variables
with distribution Unif [−1/�, 1/�] to the performance vector
and use the perturbed performance values as an input to the
TBS. We consider � ∈ {1, 2, 4, 8, 16} and use Algorithm 2 to
obtain the optimal TBS for each value of �. Figure 7 shows the
average system utility for different values of � as well as for the
strategy with optimal thresholds and tie-breaking distributions
mentioned above. It can be seen that the average system utility
converges to the optimal value as � goes to infinity.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have considered scheduling for NOMA sys-
tems under temporal demand constraints. We have shown that
TBSs achieve optimal system utility and any optimal strategy is
equivalent to a TBS. We have proposed a variable elimination
method to find the feasible temporal share region for a given
NOMA system. We have introduced an iterative algorithm based
on the Robbins Monro method which finds the optimal thresh-
olds for the TBS given the user utilities. The algorithm does not
require knowledge of the users’ channel statistics. Rather, it has
access to the channel realizations at each time-slot. Lastly, we
have provided numerical simulations to validate the proposed
approach.

A natural extension to this work is multi-cell scheduling in
NOMA systems. The methods proposed here may be extended
and applied to centralized and distributed NOMA systems. Par-
ticularly, scheduling for multi-cell NOMA systems with limited
cooperation is an interesting avenue for future work.

Another direction for future research is NOMA scheduling
under short-term fairness constraints. The problem is of interest
in delay sensitive applications. Short-term fairness may signif-
icantly affect the design of NOMA schedulers. It remains to
be seen whether variations of TBSs can achieve near-optimal
performance under short-term fairness constraints.
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APPENDIX

A. Proof of Lemma 1

Let Q̃ be a memoryless and stationary scheduling strategy.
Since strategy Q̃ is memoryless, Qt, t ∈ N is only a function of
the realization of performance vector Rm at time t. Due to sta-
tionarity, the random variables 1{

ui∈ ˜Qt(Rm×t)
} are independent

and identically distributed (i.i.d.). From the strong law of large
numbers we have:

lim
t→∞A

˜Q
i,t

a.s.
= E

(
1{

ui∈ ˜Qt(Rm×t)
}
)

(a)
= Pr

(
ui ∈ Q̃t(R

m)
)
,

(18)

where (a) follows from E(1A) = Pr(A) for any event A. Sim-
ilarly, the random variables Xt �

∑m
j=1 Rj,t1{

˜Qt(Rm×t)=Vj

}

are i.i.d.. Hence, from the strong law of large numbers we have:

lim
t→∞U

˜Q
t

a.s.
=

m∑

j=1

E

(
Rj1{

˜Qt(Rm)=Vj

}
)
. (19)

B. Proof of Theorem 1

Case i) wn = wn = wn, Nmax = n
As an intermediate step, we consider the special case of the

scheduling problem when the temporal demand constraints must
be satisfied with equality, and all subset of virtual users can be
activated, i.e. V = 2U . It turns out that the inclusion of the joint
virtual user greatly simplifies the analysis of temporally fair
schedulers.

First, we prove that if a threshold strategy exists which
i) satisfies the temporal constraints, and ii) for which λi ∈
[−2M, 2M ], ∀i ∈ [n] , then it is optimal, where M is defined
in Remark 1. Fix ε > 0. Let ε′ = 2nMε. Let Q̂ ∈ QTBS be a
TBS characterized by the threshold vector λn ∈ [−2M, 2M ]n

and let Q be an arbitrary scheduling strategy. From Equation (4)
we know that |AQ

i − wi| ≤ ε, ∀i ∈ [n]. Also, by assumption,
λi ≤ M, ∀i ∈ [n]. As a result, λi(A

Q
i − wi) +

ε′
n ≥ 0, ∀i ∈ [n].

We have,

UQ ≤ UQ +

n∑

i=1

(
λi(A

Q
i − wi)

)
+ ε′

≤ lim inf
t→∞

⎡

⎣1
t

t∑

k=1

m∑

j=1

(
Rj,k1{

Qk(Rm×k)=Vj

}
)
⎤

⎦

+

n∑

i=1

λi · lim inf
t→∞

1

t

[
t∑

k=1

(
1{

ui∈Qk(Rm×k)
}
)]

−
n∑

i=1

λiwi + ε′

(a)

≤ lim inf
t→∞

1

t

t∑

k=1

[
m∑

j=1

(
Rj,k1{

Qk(Rm×k)=Vj

}
)

+

n∑

i=1

(
λi1{ui∈Qk(Rm×k)}

)
]

−
n∑

i=1

λiwi + ε′

= lim inf
t→∞

1

t

[
t∑

k=1

m∑

j=1

((
Rj,k

+
n∑

i=1

λi1{ui∈Vj}
)
1{Qk(Rm×k)=Vj}

)
]

−
N∑

i=1

λiwi + ε′

(b)

≤ lim inf
t→∞

1

t
⎡

⎣
t∑

k=1

m∑

j=1

((

Rj,k +
n∑

i=1

λi1{ui∈Vj}

)

1{
̂Qk(Rm×k)=Vj

}
)⎤

⎦

−
n∑

i=1

λiwi + ε′

(c)
= lim inf

t→∞

⎡

⎣1
t

t∑

k=1

m∑

j=1

(
Rj,k1{ ̂Qk(Rm×k)=Vj}

)
⎤

⎦

+

n∑

i=1

lim inf
t→∞

1

t

[
t∑

k=1

(
λi1{ui∈ ̂Qk(Rm×k)}

)
]

−
n∑

i=1

λiwi + ε′

≤ U
̂Q +

≤ε′
︷ ︸︸ ︷
n∑

i=1

(
λi(A

̂Q
i − wi)

)
+ε′ = U

̂Q + 2ε′,

where (a) holds since limit inferior satisfies supper-additivity,
(b) holds due to the rearrangement inequality, and finally, (c)
follows from the existence of the limit inferior. As a result:

UQ ≤ U
̂Q + 2ε′, ∀ε > 0,⇒ UQ ≤ U

̂Q,

where equality holds if and only if all of the inequalities above
are equalities. Particularly, equality in (b) requires that Q be
equivalent with Q̂.

So far, we have shown that if there exists Q̂ ∈ QTBS is a non-
empty set, with λn ∈ [−2M, 2M ]n, then, any optimal strategy
is equivalent to a threshold based strategy. In the next step, we
show that at least one such Q̂ exists. To this end, we consider
two sub-cases as follows:

Case i.1)
∑

i∈[n] wi = 1
In this case, we show that a threshold based strategy with λi ∈

[−2M,−M ], ∀i ∈ [n] exists. Note that if λi ≤ −M, ∀i ∈ [n],
then only the individual users (i.e. Vi = {ui}, i ∈ [n]) will be
chosen by the threshold strategy. The reason is that the schedul-
ing measures for the individual users are larger than that of joint
users with probability one due to Remark 1. Furthermore, from
[19], it is known that when individual users are chosen, one can
find a set of thresholds such that AQ

i = wi with probability one
for
∑

i∈[n] wi = 1. This shows the existence of suitable thresh-
olds in Case i.1.
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Case i.2)
∑

i∈[n] wi > 1
To prove existence in this case, we use the following n-

dimensional extension of the intermediate value theorem.
Lemma 3 (Poincaré-Miranda [34]): Let n ∈ N. Consider

the set of continuous functions fi : Rn → R, i ∈ [n]. Assume
that for each function fi, i ∈ [n], there exists positive reals M+

i

and M−
i , such that fi(xn) > 0 if xi = M+

i and fi(x
n) < 0 if

xi = M−
i . Then, the function fn = (f1, f2, . . . , fn) has a root

in the n-dimensional cube
∏n

i=1[−M−
i ,M

+
i ]. Alternatively:

∃x∗
1, . . . , x

∗
n ∈

n∏

i=1

[−M−
i ,M

+
i ] : fi(x

∗
1, . . . , x

∗
n) = 0, ∀i ∈ [n].

We provide the proof when 0 < wi < 1, i ∈ [n]. Take
fi(λ

n) � AQTBS

i − wi, ∀i ∈ [n]. Then, fi are continuous func-
tions of λn. Next, we find a set of thresholds (M+

i ,M−
i ), i ∈ [n]

satisfying the conditions of Lemma 3. Note that if λi = M ,
ui ∈ QTBS(R

n) with probability one. To see this, let Vj be a
virtual user such that ui /∈ Vj and let V′

j = Vj ∪ {ui}. Then,

P (S(Vj , Rj,t) ≤ S(V′
j , Rj,t))

= P

(

Rj,t +

n∑

i=1

λi1{ui∈Vj} ≤ Rj′,t +

n∑

i=1

λi1{ui∈Vj} +M

)

= P (Rj,t −Rj′,t ≤ M) = 1,

where the last equality follow from Remark 1. As a re-
sult, AQTBS

i − wi = 1− wi > 0. Hence, M+
i = M satisfies

the conditions of Lemma 3. Next, we construct M−
i , i ∈ [n].

Note that by assumption e �
∑

i∈[n] wi−1

n > 0. Furthermore, it
is straightforward to show that there exists αn > 0 such that∑

i∈[n] αi = 1 and wi − αie > 0, i ∈ [n]. Define w′
i = wi −

αie, i ∈ [n]. Then, by construction,
∑

i∈[n] w
′
i = 1. By similar

arguments as in the case i.1, for any fixed i ∈ [n], there exists
λi ∈ [−2M,−M ] such that AQ

i = w′
i < wi. So, AQ

i − w′
i < 0.

Consequently, M−
i = λi satisfies the condition that fi(λn) <

0, λi = M−
i , ∀i ∈ [n]. By Lemma 3, there exists λn such that

AQ
i = wi, i ∈ [n] simultaneously.
Case ii) wn < wn or Nmax < n
The proof is broken into two subcases wn = wn =

wn, Nmax < n and wn �= wn, Nmax ≤ n, and follows by sim-
ilar arguments as Case i). The complete proof is provided in
[42].

C. Proof of Theorem 3

Condition (4) follows from the properties of the Harmonic
series. We provide the proof for condition (2). We showed in
Theorem 1 that the optimal threshold vector λ∗n exists. Let εn

be an arbitrary vector of real numbers. Define b∗i and bi, i ∈ [n] as
the resulting temporal shares for the optimal TBS with threshold
vector λ∗n and the temporal shares for QTBS(λ

n), respectively,
where λn = λ∗n + εn. Let A∗

j and Aj , j ∈ [m] be the event that
virtual user j is activated at a given time-slot byQTBS(λ

∗n) and
QTBS(λ

n), respectively. We need to show that:

(εn)T (b∗n − bn) > 0, (20)

where b∗i =
∑

j:ui∈Vj
P (A∗

j), and bi =
∑

j:ui∈Vj
P (Aj). Equa-

tion (20) can be written as:
∑

i∈[n]
εi(b

∗
i − bi) > 0. (21)

Note that by the law of total probability

b∗i =
∑

k∈[m]

∑

j:ui∈Vj

P
(
A∗

j

⋂
Ak

)
,

bi =
∑

k∈[m]

∑

j:ui∈Vj

P
(
Aj

⋂
A∗

k

)
.

As a result, we need to show that

∑

i∈[n]
εi

(
∑

k∈[m]

∑

j:ui∈Vj

P
(
A∗

j

⋂
Ak

)

−
∑

k∈[m]

∑

j:ui∈Vj

P
(
Aj

⋂
A∗

k

)
)

> 0

⇔
∑

k∈[m]

∑

i∈[n]

∑

j:ui∈Vj

εi

(
P
(
A∗

j

⋂
Ak

)
− P

(
Aj

⋂
A∗

k

))
> 0

⇔
∑

k∈[m]

∑

j∈[m]

∑

i:ui∈Vj

εi

(
P
(
A∗

j

⋂
Ak

)
− P

(
Aj

⋂
A∗

k

))
> 0

⇔
∑

k∈[m]

∑

j∈[m]

P
(
A∗

j

⋂
Ak

)
⎛

⎝
∑

i:ui∈Vj

εi

⎞

⎠

−
∑

k∈[m]

∑

j∈[m]

P
(
A∗

j

⋂
Ak

)
(
∑

i:ui∈Vk

εi

)

> 0.

Let ej =
∑

i:ui∈Vj
εi, j ∈ [m]. Note that ej is the perturba-

tion of the scheduling measure of the virtual user j defined in
Definition 9 resulting from changing λ∗n to λn. In fact
the scheduling measure can be written as S

(Vj , Rj

)
= Rj +∑

i:ui∈Vj
λ∗
i + ej . We need to show that:

∑

k∈[m]

∑

j∈[m]

ejP
(
A∗

j

⋂
Ak

)
−
∑

k∈[m]

∑

j∈[m]

ekP
(
A∗

j

⋂
Ak

)
> 0

⇔
∑

k∈[m]

∑

j∈[m]

(ej − ek)
(
P
(
A∗

j

⋂
Ak

)
− P

(
A∗

k

⋂
Aj

))
> 0

We claim that ej − ek and P (A∗
j

⋂Ak)− P (A∗
k

⋂Aj) have
the same sign for all j, k ∈ [m]. To see this, note that if ej > ek
then the threshold for virtual user j is increased more than that
of virtual user k after perturbing λ∗n by εn. As a result, it can
be shown thatP (A∗

j

⋂Ak) > P (A∗
k

⋂Aj). Roughly speaking,
this can be interpreted as follows: if the threshold for virtual user
j is increased more than that of virtual user k, then its temporal
share increases more than that of k as well. A similar argument
can be provided for ej < ek.

D. Proof of Lemma 2

Fix the pair of vectors of temporal demands (wn.wn) and
(w′n, w′n) and α ∈ [0, 1]. We need to show the following
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inequality U ∗
w′′n,w′′n ≥ αU ∗

wn,wn + (1− α)U ∗
w′n,w′n , where

w′′n = αwn + (1− α)w′n and w′′n = αwn + (1− α)w′n.
Let QTBS be the optimal strategy for the temporal constraints
(wn.wn). Also, let Q′

TBS be the optimal strategy for the
temporal constraints (w′n, w′n) . Define the strategy Q′′ as
follows: for α fraction of the time-slots, the strategy chooses
the active user based on QTBS and for (1− α) fraction of the
time it uses Q′

TBS to choose the active user. It is straightfor-
ward to verify that the resulting temporal shares are between
(w′′n, w′′n). Furthermore, the resulting utility from Q′′ is
U ′′ = αU ∗

wn,wn + (1− α)U ∗
w′n,w′n . By definition we have

U ′′ ≤ U ∗
w′′n,w′′n . This completes the proof.

E. Proof of Theorem 4

We provide a sketch of the proof. Let U ∗ (U ∗
1/�) be the

optimal strategy for the setup Ω0 (Ω1/�) achieved using the
strategy Q∗ (Q∗

1/�). Furthermore, let U1/� be the utility due

to applying the �-PTBS Q̂1/� to Ω0. We need to show that
the sequence U1/� converges to U ∗ in probability as � → ∞.
The sequence U1/� is upper-bounded by U ∗ by definition of
U ∗. Consequently, to prove Theorem 4, it is enough to show
that P (U ∗ ≤ U1/� +

2
� ) = 1. In order to prove the last equal-

ity we consider an intermediate genie-assisted strategy Q̃1/�

for the setup Ω1/�. The strategy uses the output of Q∗ as side-
information assuming that the output is provided using a genie.
More precisely, at time-slot t the strategy Q̃1/� forΩ1/� activates
the same virtual user Vj which the strategy Q∗ activates for Ω0.
Let Ũ1/� be the average utility of Q̃1/�. Then, U ∗ ≤ Ũ1/� +

1
�

with probability one. The reason is that the two strategies acti-
vate the same virtual users and the utility in Ω0 and Ω1/� differ
in a Unif [−1/�, 1/�] variable for any given virtual user. On the
other hand, using the rearrangement inequality as in the proof
of Theorem 1, it can be shown that P (Ũ1/� ≤ U ∗

1/�) = 1. Fur-

thermore, U ∗
1/� ≤ U1/� +

1
� by similar arguments. As a result,

P

(
U ∗ ≤ U1/� +

2

�

)
≥ P

(
U ∗ ≤ U ∗

1/� +
1

�

)

≥ P

(
U ∗ ≤ Ũ1/� +

1

�

)
= 1 ⇒ P

(
U ∗ ≤ U1/� +

2

�

)
= 1.

The proof is completed by taking � to infinity.
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